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pdfs & charm 
data

extraction of 
charm mass

impact on Z, W 
cross sections 

at LHC

pdfs & jet 
data

extraction of 
αS(MZ) & g PDF

multijets in DIS 
and incl. jets in 
PHP & αS(MZ)



                                                                                                                                                                              

Kinematic Plane & Luminosity 
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Inclusive DIS kinematics
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Extraction of parton dist. functions
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Factorization: σ : pdf(x, µf) ⊗ σ̂

σ̂ - can be calculated in pQCD
pdf - universal pdfs determined from data and QCD (DGLAP) evolution eq.

F2 ∼
�

e2i (xqi + xqi)

xF3 ∼
�

(xqi − xqi)

FL ∼ αsg

dominant 

at high Q2 

at low Q2, high y 

jets depend already in LO on:
−αsg and αs

will reduce corr. between them

CC data sensitive to u and d

charm prod. also depends on:
−αsg

- but more on the heavy
   quark mass and scheme

HERAPDF 1.0 and 1.5 (NLO & NNLO) have been extracted 
using precise (1-2%) combined inclusive DIS data from HERA
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Charm data and their combination
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precision improved by about a factor of 
2 compared to best single measurement

these different measurements from 
H1 & ZEUS are then extrapolated 
and combined  



                                                                                                                                                                              

Comparison to HERAPDF1.5 NLO
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wide error band due to 
1.35 < mC < 1.65 GeV

GMVFNS - general mass variable flavor 
number scheme:
- very high Q2: 5 active flavors, mC=0,
  resummation of log(Q2/m2), ...
- very low Q2: 3 active flavors, massive
  charm
- in between (most of the scale):
  different matching conditions,  
  approximations, correction terms

HERAPDF1.5, extracted from 
inclusive DIS, provides good 
description of charm data 

EPJ C73 (2013) 2311



                                                                                                                                                                              

Different GMVFNS and ZMVFNS
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at lower Q2 the calculations 
differ significantly - due to 
differences in terms neglected 
and in matching low/high Q2

➥ consider charm mass as 
mass parameter MC to be 
determined from data
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data (as on previous slide) using 
different VFNS implementations

  charm data well described for Q2 ≥ 5 GeV2 with            Mc = Mopt
c

EPJ C73 (2013) 2311



                                                                                                                                                                              

Running MS charm mass in FFNS
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perform scan of mc(mc) of the 
QCD fit to HERA-1 inclusive and 

combined charm data 

mc(mc) = 1.26 ± 0.05 (exp) ± 0.03 (model/param) ± 0.02 (αs)

model: vary fs, mb, Q2min

PDG : 1.275 ± 0.025GeV (latticeQCDand time−like processes)

FFNS:
- no charm in the proton, 
  just 3 active flavors
- full kinematical treatment with
   massive charm
- calculation uses running MS mass, 
   which is well defined 

EPJ C73 (2013) 2311
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Impact of charm data on PDFs
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Impact of the charm data on PDFs  

!  charm distribution function uncertainty is drastically reduced    
!  impact on gluon  (through !g ! cc)  and light sea 

PHOTON 2013           
Paris  20.05.2013 

V. Chekelian,  Proton Structure     and 
PDFs at HERA 

16 

more c (g → cc) −→ less g, less u, d

significant reduction in uncertainty of charm density



                                                                                                                                                                              

Inclusive jets in DIS in PDF fits
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Inclusive jets from H1 and ZEUS in bins of Q2 and PT are added in the PDF fit
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adding jet data dramatically decreases 
the low-x gluon uncertainty, not only 
the experimental but also the model and 
parameterization uncertainties 

reminder: jets are sensitive in LO to αS ⊗ g (BGF) and αS (QCDC)

the gluon uncertainty
at low-x blows up



                                                                                                                                                                              

αs(MZ) from incl. DIS & jets in DIS
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inclusive DIS 
data only

inclusive DIS 
+ jets data

➡ adding jet data successfully reduces the correlation between αS and the gluon

scale uncertainty from variation of renormalization 
& factorization scale by a factor of ½ and 2

αs(MZ) = 0.1202 ± 0.0019(exp/model/param/hadronization) +0.0045
−0.0036(scale)

stay tuned for HERAPDF2.0: will include all final inclusive data, charm and jets

1.6% uncertainty + 3-3.7% scale unc.  

desparately seeking NNLO

H1prelim-11-034
ZEUS-prel-11-001
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NLOJet++ and fastNLO
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αs(MZ) from norm. multijet cross sect.

14

Multijet production in DIS using regularized unfolding (H1prelim-12-031) 

NLO predictions:
NLOJet++, fastNLO, QCDNUM
CT10 PDF,αs(MZ)=0.118

μf2 = Q2

μr2 = (Q2+PT2)/2

jet energy scale uncertainty 1%, 
effect on cross sections 3-10% 

ExtractαS(MZ) by fitting each jet 

cross sections singly and also all 3 
simultaneously, with covariance 
matrix from unfolding and syst. 
errors treated as penalty terms

αs(MZ) = 0.1163 ± 0.0011 (exp) ± 0.0040 (theo) ± 0.0014(pdf)

desparately seeking NNLO

uncertainty: 1% exp and 3.6% from theory and pdf 
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αs(MZ) from inclusive jets in PHP
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scale variation 
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Relevance of previous data

LEP HERA Tevatron

!

!

p

!

p

p

Obvious how the Tevatron results relate to

the LHC and LEP results relate to an FLC...

Photon structure also being probed at HERA

(higher scales).

Remnant-remnant interactions exist at all

colliders.

HERA and LEP can turn them “on” or “off”.

running of αS in a single experiment

in good agreement with RGE (2-loops)

αs(MZ) = 0.1206 +0.0023
−0.0022 (exp)

+0.0042
−0.0035(theo)

uncertainty: 1.9% exp and 3.6% from theory (includes pdf) 

desparately seeking NNLO

direct + resolved processes



                                                                                                                                                                              

Comparison of recent αs(MZ)-values

17
)Z(Ms

0.11 0.12 0.13

World average
J. Beringer et al. (PDG), PRD 86 010001 (2012)

EW Fit, Z decays, 4NLO
Gfitter Group, EPJC 72, 2003 (2012)

CMS R3/2, NLO
CMS QCD-11-003, arXiv:1304.7498 (2013)

ATLAS incl. jets, NLO
B. Malaescu et al., EPJC 72, 2041 (2012)

D0 angular correlations, NLO
D0, Phys. Lett. B718, 56 (2012)

D0 incl. jets, approx. NNLO
D0, PRD 80, 111107 (2009)

*pZEUS inclusive jets in 
ZEUS, Nucl. Phys. B 864, 1 (2012)

 (unfold)2H1 norm. multijets at high Q
H1-prelim-12-031

2H1 multijets at low Q
H1, EPJC 67, 1 (2010)

H1+ZEUS NC, CC and jet QCD fits
H1-prelim-11-034, ZEUS-Prel-11-001

Uncertainties: exp.             theo.

using complete O(αS4) calc. by
P.Baikov et al, PRL 108 222003 (2012)

desperately 
seeking 
NNLO !

PDF unc. is part 
of exp. unc.

for H1 & ZEUS 
jets it is part of 

theo. unc.



                                                                                                                                                                              

Summary
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·combination of charm data yields significantly improved precision 

·good description of charm data by different VFNS variants, after fitting 
“optimal” charm mass for each variant. 

·running MS charm mass:  

·including charm data in PDF fit significantly reduces the uncertainty on 
charm from the sea.

·including jet data in PDF fit allows to determine αS(MZ) & gluon pdf.

·αS(MZ)-values from jets at HERA reach exp. precision of 1%, as good as 

or better than other measurements, but with 3-4% uncertainty from NLO 
theory.

·desperately seeking NNLO !  

mc(mc) = 1.26 ± 0.05 (exp) ± 0.03 (mod/par) ± 0.02 (αs) GeV



                                                                                                                                                                              

Extras

19



                                                                                                                                                                              

HERAPDFs

·idea: use only HERA data (combined H1 & ZEUS) in the PDF fits
·precise data set with total uncertainties between 1-2% over most of the 

phase space
·systematic correlated and uncorr. uncertainties well controlled, allowing 

for Δχ2 = 1 uncertainty criterion 

·e±p data only, i.e. no need for deuterium corrections and heavy target 
corrections

·for central fit use parameterizations with minimum number of parameters
·param. uncertainty ⇒ vary number of parameters (and parametrization) 

and Q02, the starting scale of the parameterizations (default = 1.9 GeV2)
·model uncertainty ⇒ vary mc, mb, fs, Q2min  (defaults: 1.4 GeV, 4.75 GeV, 

0.31, 3.5 GeV2)

20



                                                                                                                                                                              

HERAPDF parametrizations I

· starting scale Q02 = 1.9 GeV2 (below mc), NLO DGLAP evolution (RT-VFNS)

· constraints: 

· momentum sum rules, quark sum rules

· x·sbar = fs x·Dbar strange sea is a fixed fraction fs of Dbar at Q02

· BUbar = BDbar and Buv = Bdv

· Sea = 2x·(Ubar+Dbar)

· Ubar = Dbar at x=0

21

·x·uv, x·dv, x·Ubar, x·Dbar and x·g are parametrized according to:

xf(x,Q2
0) = AxB (1 − x)C (1 + Dx + Ex2 + �

√
x)

· 10 free parameters are used up to HERAPDF1.5 fitting HERA-1 data:

· Bg, Cg, Buv, Cuv, Cdv, ADbar, BDbar, CDbar, CUbar, Euv

· 14 free parameters are used for HERAPDF1.5f, HERAPDF1.6 fitting HERA-1 
and HERA-2 data (more data require a more flexible parametrization):

· - A’g·xB’g·(1-x)Cg term for low-x gluon and Buv ≠ Bdv to free low-x uv from dv 



                                                                                                                                                                              

HERAPDF parametrizations II
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xf(x,Q2
0) = AxB (1 − x)C (1 + Dx + Ex2 + �

√
x)

extended gluon parametrization: Ag·xBg·(1-x)Cg·(1+Dx+Ex2) - A’g·xB’g·(1-x)Cg

A’g B’g

free free

HERAPDF1.5f & HERAPDF1.6: 
- additional parameters: Bdv, Duv, A’g, B’g
- estimate of parametrization uncertainty: indicated parametrization variations, Q02

- estimate of model uncertainties: mc, mb, fs, Q2min are varied
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HERAPDF table

HERA Combined results
HERA results

H1 home page

ZEUS home page

NAME
NC and CC
DIS

NC, lower 
E(p_beam)

Jets Charm Docu Grids Data comparison Date

HERAPDF1.7 NLO
HERAI + 
partial HERAII

H1+ZEUS H1 and ZEUS(1) H1+ZEUS Figures N.A. June 2011

HERAPDF1.6 NLO
HERAI + 
partial HERAII

--- H1 and ZEUS(1) --- Writeup and figures N.A. March 2011

HERAPDF1.5 
NNLO

HERAI + 
partial HERAII

--- --- --- Figures
LHAPDF beta
5.8.6

March 2011

HERAPDF1.5 
NLO

HERAI + 
partial HERAII

--- --- --- Figures
LHAPDF beta
5.8.6

July 2010

Charm mass scan HERAI --- --- H1+ZEUS Writeup and figures ---
August
2010

HERAPDF1.0
NNLO

HERAI --- --- ---
ICHEP2010 writeup and
figures

Docu for LHAPDF April 2010

HERAI H1+ZEUS --- --- Writeup and figures N.A. April 2010

HERAI --- --- H1+ZEUS DIS2010 writeup and figures N.A. April 2010
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they are close to the centre-of gravity in x and Q2 of the corresponding σvis,bin bins, taking
advantage of the fact that the binnings used by the H1 and ZEUS experiments are similar. Prior
to the combination, the H1 lifetime analysis measurements are transformed, when needed, to
the common grid (x,Q2) points using the NLO FFNS calculation [19]. The resulting scaling
factors are always smaller than 18% and the associated uncertainties, obtained by varying the
charm mass, the scales and the PDFs, are negligible. For all but five grid points at least two
measurements enter into the combination.

3.4 Combination method

The combination of the data sets uses the χ2 minimisation method developed for the combina-
tion of inclusive DIS cross sections [32, 34]. The χ2 function takes into account the correlated
systematic uncertainties for the H1 and ZEUS cross section measurements. For an individual
data set, e, the χ2 function is defined as

χ2
exp,e (m, b) =

∑

i

(

mi −
∑

j γ
i,e
j mibj − µi,e

)2

(δi,e,stat µi,e)2 + (δi,e,uncormi)2
+
∑

j

b2j . (5)

Here µi,e is the measured value of σcc̄
red(xi, Q2

i ) at an (x,Q2) point i and γi,e
j , δi,e,stat and δi,e,uncor

are the relative correlated systematic, relative statistical and relative uncorrelated systematic
uncertainties, respectively. The vectormmm of quantitiesmi expresses the values of the combined
cross section for each point i and the vector bbb of quantities bj expresses the shifts of the cor-
related systematic uncertainty sources, j, in units of the standard deviation. Several data sets
providing a number of measurements are represented by a total χ2 function, which is built from
the sum of the χ2

exp,e functions of all data sets

χ2
tot =

∑

e

χ2
exp,e . (6)

The combined reduced cross sections are given by the vectorm obtained by the minimisation
of χ2

tot with respect to m and b. With the assumption that the statistical uncertainties are
constant and that the systematic uncertainties are proportional tomi, this minimisation provides
an almost unbiased estimator ofm.

The double differential cross section measurements, used as input for the combination, are
available [54] with their statistical and systematic uncertainties. The statistical uncertainties
correspond to δi,e,stat in equation (5). The systematic uncertainties within each measurement
are classified as either point-to-point correlated or point-to-point uncorrelated, corresponding
to γi,e

j and δi,e,uncor, respectively. Asymmetric systematic uncertainties are symmetrised before
performing the combination. The result is found to be insensitive to the details of the symmetri-
sation procedure.

In the present analysis the correlated and uncorrelated systematic uncertainties are predomi-
nantly of multiplicative nature, i.e. they change proportionally to the central values. In equa-
tion (5) the multiplicative nature of these uncertainties is taken into account by multiplying the
relative errors γi,e

j and δi,e,uncor by the expectationmi.

14

Data set Tagging method Q2 range N L
[GeV2] [pb−1]

1 H1 VTX [14] Inclusive track lifetime 5 – 2000 29 245
2 H1 D∗ HERA-I [10] D∗+ 2 – 100 17 47
3 H1 D∗ HERA-II [18] D∗+ 5 – 100 25 348
4 H1 D∗ HERA-II [15] D∗+ 100 – 1000 6 351
5 ZEUS D∗ (96-97) [4] D∗+ 1 – 200 21 37
6 ZEUS D∗ (98-00) [6] D∗+ 1.5 – 1000 31 82
7 ZEUS D0 [12] D0,noD∗+

5 – 1000 9 134
8 ZEUS D+ [12] D+ 5 – 1000 9 134
9 ZEUS µ [13] µ 20 – 10000 8 126

Table 1: Data sets used in the combination. For each data set the charm tagging method, the
Q2 range, the number of cross section measurements N and the integrated luminosity L are
given. The data set with theD0,noD∗+ tagging method is based on an analysis ofD0 mesons not
originating from detectable D∗+ decays. Charge conjugate modes are always implied.

ŝ range αK(D∗) αK(g.s.) Measurement
ŝ ≤ ŝ1 6.1± 0.9 4.6± 0.7 [47] D∗, DIS, no-jet sample

ŝ1 < ŝ ≤ ŝ2 3.3± 0.4 3.0± 0.3 [47] D∗, DIS, jet sample
ŝ > ŝ2 2.67± 0.31 2.19± 0.24 [11] D∗ jet photoproduction

Table 2: The αK parameters used for the longitudinal fragmentation into D∗ mesons and in
ground state (g.s.) charmed hadrons. The first column shows the ŝ range in which a particular
value of αK is used, with ŝ1 = 70 ± 40 GeV2 and ŝ2 = 324 GeV2. The variations of αK are
given in the second and third column. The parameter ŝ2 is not varied, since the corresponding
uncertainty is already covered by the αK variations.

f(c → D∗+) 0.2287± 0.0056
f(c → D+) 0.2256± 0.0077
f(c → D0,notD∗+

) 0.409± 0.014
B(c → µ) 0.096± 0.004

Table 3: Charm fragmentation fractions to charmed mesons and the charm branching fraction
to muons.
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Figure 1: Pull distribution for the combined data samples (shaded histogram). RMS gives the
root mean square of the distribution. The curve shows the result of a binned log-likelihood
Gaussian fit.
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Theχ2 function takes into account the correlated systematic 

uncertainties for the H1 and ZEUS cross section measurements.  
Theχ2 function is defined for an individual data set e by

Combination method:

- Correct visible cross sections to total cross sections

- Correct most data points to a common (Q2,x) grid
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Theory Scheme Ref. F2(L) mc Massive Massless αs(mZ) Scale Included
def. [GeV] (Q2

∼
<m2

c) (Q2 ! m2
c) (nf = 5) charm data

MSTW08 NLO RT standard [28] F c
2(L) 1.4 (pole) O(α2

s) O(αs) 0.12108 Q [1, 4–6, 8, 9, 11]
MSTW08 NNLO approx.-O(α3

s) O(α2
s) 0.11707

MSTW08 NLO (opt.) RT optimised [31] O(α2
s) O(αs) 0.12108

MSTW08 NNLO (opt.) approx.-O(α3
s) O(α2

s) 0.11707

HERAPDF1.5 NLO RT standard [55] F c
2(L) 1.4 (pole) O(α2

s) O(αs) 0.1176 Q HERA inclusive DIS only

NNPDF2.1 FONLL A FONLL A [30] n.a.
√
2 O(αs) O(αs) 0.119 Q [4–6, 12, 13, 15, 18]

NNPDF2.1 FONLL B FONLL B F c
2(L)

√
2 (pole) O(α2

s) O(αs)

NNPDF2.1 FONLL C FONLL C F c
2(L)

√
2 (pole) O(α2

s) O(α2
s)

CT10 NLO S-ACOT-χ [22] n.a. 1.3 O(αs) O(αs) 0.118
√

Q2 +m2
c [4–6, 8, 9]

CT10 NNLO (prel.) [56] F cc̄
2(L) 1.3 (pole) O(α2

s) O(α2
s)

ABKM09 NLO FFNS [57] F cc̄
2(L) 1.18 (MS) O(α2

s) - 0.1135
√

Q2 + 4m2
c for mass optimisation only

ABKM09 NNLO approx.-O(α3
s) -

Table 6: Calculations from different theory groups as shown in figures 5-8. The table shows the heavy flavour scheme used and the correspond-
ing reference, the respective F2(L) definition (section 2), the value and type of charm mass used (equation (3)), the order in αS of the massive
and massless parts of the calculation, the value of αs, the renormalisation and factorisation scale, and which HERA charm data were included
in the corresponding PDF fit. The distinction between the two possible F2(L) definitions is not applicable (n.a.) for O(αs) calculations.
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scheme Mopt
c χ2/ndof χ2/ndp

[GeV] σNC,CC
red +σcc̄

red σcc̄
red

RT standard 1.50± 0.06exp ± 0.06mod ± 0.01param ± 0.003αs 630.7/626 49.0/47

RT optimised 1.38± 0.05exp ± 0.03mod ± 0.01param ± 0.01αs 623.8/626 45.8/47

ACOT-full 1.52± 0.05exp ± 0.12mod ± 0.01param ± 0.06αs 607.3/626 53.3/47

S-ACOT-χ 1.15± 0.04exp ± 0.01mod ± 0.01param ± 0.02αs 613.3/626 50.3/47

ZM-VFNS 1.60± 0.05exp ± 0.03mod ± 0.05param ± 0.01αs 631.7/626 55.3/47

Table 7: The values of the charm mass parameter Mopt
c as determined from the Mc scans in

different heavy flavour schemes. The uncertainties of the minimisation procedure are denoted
as ‘exp’, the model and parameterisation uncertainties are represented by ‘mod’ and ‘param’,
respectively. Also the uncertainty due to αs variation is listed. The corresponding global and
partial χ2 are presented per degrees of freedom ndof and per number of data points ndp, respec-
tively.

scheme σZ [nb] σW+ [nb] σW− [nb]

RT standard 28.91± 0.30 57.04± 0.55 39.94± 0.35

RT optimised 28.85± 0.24 57.03± 0.45 39.93± 0.27

ACOT-full 29.32± 0.42 57.84± 0.74 40.39± 0.47

S-ACOT-χ 29.00± 0.22 57.32± 0.42 39.86± 0.24

ZM-VFNS 28.81± 0.24 56.71± 0.40 39.86± 0.25

Table 8: NLO VFNS predictions for Z/W± cross sections at the LHC for
√
s = 7 TeV using

the MCFM program. The calculations are based on the PDF sets extracted in the corresponding
schemes from the HERA data usingMopt

c for the charm quark mass parameter. The listed cross
section uncertainties correspond to the uncertainties onMopt

c only.
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Hessian method for fitting αs(MZ) 
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Method
• TMinuit (Migrad, Hesse)

– ! are free parameters in the fit (one for each systematic [10])
– V are absolute errors
– " are relative errors

• Theory cross section
– NLOJET++ 4.1.3
– FastNLO v2.0
– QCDNUM
– LHAPDF: PDF-files + alpha-s evolution code (Mz etc…)
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αs(MZ)-values from norm. multijets 

30

Measurement αS(MZ)

Uncertainty

χ2/ndfexperimental had. theory PDF

normalised inclusive jet 0.1197 0.0008 0.00118 +0.0054
−0.0053 0.0014 28.663/23 = 1.246

normalised dijet 0.1142 0.0010 0.0009 +0.0050
−0.0046 0.0017 27.037/23 = 1.176

normalised trijet 0.1185 0.0018 0.0016 +0.0050
−0.0035 0.0013 12.013/16 = 0.751

normalised multijet 0.1177 0.0008 0.0011 +0.0052
−0.0049 0.0014 104.61/64 = 1.634

normalised multijet (k < 1.3) 0.1163 0.0011 0.0008 +0.0044
−0.0035 0.0014 53.257/41 = 1.299

Table 4: The values of αs(MZ) fitting the individual measurements and fitting simultaneously
all three normalised multijet measurements. The determination of αs(MZ) fitting simultane-
ously all the three measurements, however requiring a k-factor < 1.3 which results in taking
only 42 measurement bins out of 65.
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Figure 1: Pull values of unfolded pseudo-data and true pseudo-data for all phase space bins for
a Monte Carlo unfolding using statistically independent events. For comparison also the pull
values using the bin-by-bin corrected pseudo-data and the true pseudo-data are shown.
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(H1prelim-12-031)

NC DIS Selection 150 < Q2 < 15000GeV2 0.2 < y < 0.7

Inclusive jet 7 < PT < 50GeV

−1.0 < ηlab < 2.5Dijet 5 < P jet1
T , P jet2

T < 50GeV
M12 > 16GeV

Trijet 5 < P jet1
T , P jet2

T , P jet3
T < 50GeV

Table 1: Selection criteria for the NC DIS and jet samples.

Variable #bins detector level #bins particle level Lower bound Upper bound
y 3 2 (+1) 0.08 gen: 1.0, rec: 0.7
Q2 15 8 120 GeV 40000 GeV

PT,jet 10 6 3 GeV 100 GeV
< PT >Dijet 10 6 3 GeV 50 GeV
< PT >Trijet 8 5 3 GeV 30 GeV

Table 2: Kinematic range and number of bins of migration matrix for unfolding.

Bin number Q2 range (in GeV2)
1 150 ≤ Q2 < 200
2 200 ≤ Q2 < 270
3 270 ≤ Q2 < 400
4 400 ≤ Q2 < 700
5 700 ≤ Q2 < 5000
6 5000 ≤ Q2 < 15000

Bin label PT or �PT� range (in GeV)
α 7 ≤ PT < 11
β 11 ≤ PT < 18
γ 18 ≤ PT < 30
δ 30 ≤ PT < 50

Table 3: The bins in Q2, PT or �PT� for inclusive jets, dijets and trijets as shown in the following
figures.

15
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Normalised Inclusive Jet Cross Section
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Figure 5: The normalised inclusive jet cross sections as functions of Q2
and the transverse

momentum in the Breit frame PT. The inner error bars represent the statistical uncertainty. The

correlations of the statistical uncertainties cannot be seen in this plot but in the correlation matrix

in fig. 3. The NLO QCD predictions are shown with the symmetrised theory uncertainties

determined by scale variations. The ratio of NLO QCD with respect to data is shown in the

lower part of each plot. 20
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Normalised Dijet Cross Section
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Figure 6: The normalised dijet cross sections in NC DIS as a function of the average transverse
momentum of the two leading jets �PT� in the Breit frame in the phase space as defined in table
1 in bins of Q2.
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Normalized trijet cross sections
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Normalised Trijet Cross Section
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Figure 7: The normalised trijet cross sections in NC DIS as a function of the average transverse
momentum of the three leading jets �PT� in the Breit frame in the phase space as defined in
table 1 in bins of Q2.
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Figure 3: (a) The measured differential cross-section dσ/dηjet based on the kT
jet algorithm for inclusive-jet photoproduction with Ejet

T > 17 GeV (dots) in the
kinematic region given by Q2 < 1 GeV 2 and 142 < Wγp < 293 GeV. (b) The
relative difference between the measured dσ/dηjet and the NLO QCD calculation
(dots). Other details as in the caption to Fig. 2.
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includes in addition:
- double differential cross sections
  in bins of ET and rapidity of the
  jets

- investigation of effects of:
  - kt,anti-kt and SIScone
  - MPI interactions
  - different photon PDFs

the photon PDFs. The value of αs(MZ) used in each calculation was that associated with

the corresponding set of proton PDFs.

The αs(MZ) dependence of the predicted cross sections in each bin i of Ejet
T was parame-

terised according to

[

dσ/dEjet
T (αs(MZ))

]

i
= C i

1αs(MZ) + C i
2α

2
s(MZ),

where C i
1 and C i

2 were determined from a χ2 fit to the NLO QCD calculations. The value

of αs(MZ) was determined by a χ2 fit to the measured dσ/dEjet
T values. In the fitting

procedure, the running of αs as predicted by QCD was assumed. Only the measurements

for Ejet
T > 21 GeV were used in the fit to minimise the effects of a possible non-perturbative

contribution in addition to that of hadronisation and the uncertainty coming from higher

orders. In addition, the fit was restricted to Ejet
T < 71 GeV because of the relatively large

uncertainty coming from the proton PDFs for higher Ejet
T values.

The experimental uncertainties on the extracted values of αs(MZ) were evaluated by

repeating the analysis for each systematic check presented in Section 7. The overall

normalisation uncertainty from the luminosity determination was also included. The

largest contribution comes from the uncertainty in the absolute jet energy scale. The

theoretical uncertainties were evaluated as described in Section 8. The largest contribution

arises from the terms beyond NLO, which was estimated by using the method of Jones

et al. [67]. The uncertainty due to the photon PDFs is of the same order as that arising

from higher orders. The uncertainty due to the proton PDFs and that arising from

the hadronisation effects were also estimated. All uncertainties are listed separately in

Table 8.

As a cross-check, αs(MZ) was determined by using NLO QCD calculations based on the

CTEQ6.1 [68] (MSTW08) sets of proton PDFs. The values obtained are consistent within

1.0 (1.0), 0.9 (0.9) and 0.6 (0.8)% with those based on ZEUS-S for the kT , anti-kT and SIS-

cone determinations, respectively. The uncertainty arising from the proton PDFs was esti-

mated to be ±1.3 (0.9, 0.5)% for the kT and anti-kT and ±1.2 (0.8, 0.4)% for the SIScone

determinations using the results of the CTEQ6.1 (MSTW08nlo90cl, MSTW08nlo68cl)

analysis.

The values of αs(MZ) obtained from the measured dσ/dEjet
T are

αs(MZ)|kT = 0.1206 +0.0023
−0.0022 (exp.) +0.0042

−0.0035 (th.),

αs(MZ)|anti−kT = 0.1198 +0.0023
−0.0022 (exp.) +0.0041

−0.0034 (th.),

αs(MZ)|SIScone = 0.1196 +0.0022
−0.0021 (exp.) +0.0046

−0.0043 (th.).
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exp. uncertainty for inclusive jets at high Q2: ∼ 15% uncorrelated, 4% correlated


