Inclusive jets in photoproduction

Philipp Roloff (CERN, formerly DESY) on behalf of the ZEUS collaboration

This talk is based on: Nucl. Phys. **B 864** (2012) 1-37

EPS HEP 2013 Stockholm, Sweden, 17-24 July 2013

Jets in photoproduction at HERA

Jet production in photoproduction at $O(\alpha_{s})$:

- Large statistics for tests of pQCD, single hard scale E_{τ}^{jet}
- Direct sensitivity to proton and photon PDFs
- Extraction of α_{s} and its energy dependence

19/07/2013

EPS HEP 2013

Jet algorithms

k_T cluster algorithm in the longitudinally invariant inclusive mode (Catani, Ellis, Soper):

- Infrared and collinear safe cross sections at any order of pQCD
- Extensively tested at HERA: small theoretical uncertainties / hadronisation corrections in ep collisions

 \rightarrow New measurement in photoproduction presented in the following

New infrared and collinear safe jet algorithms:

- Anti-k_T (Cacciari, Salam, Soyez)
- SIScone (Salam, Soyez)

→ Test of their performance in a well-understood hadron-induced reaction: photoproduction at HERA

Cross sections and NLO QCD predictions

NLO predictions (Klasen et al.):

- $\mu_R = \mu_F = E_T^{jet}$
- ZEUS-S for proton PDFs, GRV-HO for photon PDFs

(unless explicitly stated otherwise)

- Hadronisation corrections from
 PYTHIA and HERWIG
- PYTHIA including multi-parton interactions (PYTHIA-MI) for comparisons

Missing terms beyond NLO are the dominating uncertainty of the predictions (for all jet algorithms)

Single-differential cross sections: $d\sigma / dE_{T}^{jet}$

 $ep \rightarrow e + jet + X$:

- 142 < W_{yp} < 293 GeV
- $Q^2 < 1 \text{ GeV}^2$
- Cross sections include every jet with $E_{\tau}^{jet} > 17$ GeV, $-1 < \eta^{jet} < 2.5$
- L_{int} = 300 pb⁻¹ (2005 2007)

Energy scale: ±1%

 $\rightarrow \pm 5\%$ uncertainty on cross section at low E_{T}^{jet} , $\pm 10\%$ at high E_{T}^{jet}

The data are well described by NLO QCD

19/07/2013

EPS HEP 2013

Single-differential cross sections: $d\sigma$ / $d\eta^{jet}$

 $ep \rightarrow e + jet + X$:

- 142 < W_{yp} < 293 GeV
- $Q^2 < 1 \text{ GeV}^2$
- Cross sections include every jet with $E_{\tau}^{jet} > 17$ GeV, $-1 < \eta^{jet} < 2.5$
- L_{int} = 300 pb⁻¹ (2005 2007)

Energy scale: ±1%

 $\rightarrow \pm 5\%$ uncertainty on cross section at low E_T^{jet}, ±10% at high E_T^{jet}

The data are well described by NLO QCD for $\eta^{jet} < 2$ (disagreement disappears for $E_{\tau}^{jet} > 21$ GeV)

19/07/2013

EPS HEP 2013

Double-differential cross sections

The data are well described by NLO QCD except at $E_{\tau}^{jet} < 21$ GeV for $\eta^{jet} > 2$

19/07/2013

EPS HEP 2013

Impact of multi-parton interactions

- Multi-parton interactions increase the predictions at low E_{τ}^{jet} and large η^{jet}
- Best description of the data for $p_{T.min}^{sec} = 1.5 \text{ GeV}$

19/07/2013

EPS HEP 2013

Impact of photon PDFs

- Comparing predictions based on GRV-HO, AFG04 and CJK
- Some difference between the predictions, especially at low E_T^{jet} high large η^{jet}
- \rightarrow Measurements have the potential to constrain photon PDFs

```
19/07/2013
```

EPS HEP 2013

Impact of proton PDFs

- Comparing predictions based on ZEUS-S, HERAPDF1.5 and MSTW08
- HERAPDF1.5 mostly lower than ZEUS-S, MSTW08 higher at high E^{jet}
- \rightarrow Measurements have the potential to constrain proton PDFs

```
19/07/2013
```

EPS HEP 2013

Comparison of the jet algorithms

- The hadronisation corrections are largest for SISCone, similar corrections for $k_{\rm T}$ and anti- $k_{\rm T}$
- The measurements are well described by NLO QCD except at large η^{jet}

19/07/2013

EPS HEP 2013

Cross section ratios

- The cross sections for anti- $k_{\rm T}$ have the same shape as those for $k_{\rm T},$ but are about 6% smaller
- SISCone has a slightly different shape than $k_{\rm T}$ or anti- $k_{\rm T}$
- The QCD calculations with up to three partons in the final state describe the measured ratios

19/07/2013

EPS HEP 2013

Determination of α

• Fit of NLO QCD to single-differential cross sections d σ / dE^{jet}_T for 21 < E^{jet}_T < 71 GeV (Phys. Lett. **B 547** (2002) 164)

• Consistent results observed for all three jet algorithms

• The results are in agreement with other determinations of α_s

 $\begin{aligned} \alpha_s(M_Z)|_{k_T} &= 0.1206^{+0.0023}_{-0.0022} \text{ (exp.)}^{+0.0042}_{-0.0035} \text{ (th.)} \\ \alpha_s(M_Z)|_{\text{anti-}k_T} &= 0.1198^{+0.0023}_{-0.0022} \text{ (exp.)}^{+0.0041}_{-0.0034} \text{ (th.)} \\ \alpha_s(M_Z)|_{\text{SIScone}} &= 0.1196^{+0.0022}_{-0.0021} \text{ (exp.)}^{+0.0046}_{-0.0043} \text{ (th.)} \end{aligned}$

EPS HEP 2013

Energy-scale dependence of α_s

- The running is in good agreement with the two-loop QCD prediction

19/07/2013

EPS HEP 2013

Summary

- Inclusive jet cross sections in PhP were measured using the ZEUS detector
- The data are generally well described by NLO QCD predictions
- The inclusion of multi-parton interactions improves the predictions at low $E_{_{T}}^{_{jet}}$ and large $\eta^{^{jet}}$
- The presented measurements have the potential to improve the photon and proton PDFs in future QCD fits
- The strong coupling constant was extracted at the Z mass with competitive precision compared to other measurements and over a wide $E_{\tau}^{\ jet}$ range