HEP 2013, The 2013 European Physical Society Conference on High Energy Physics Stockolm , July 18 ${ }^{\text {th }}-24^{\text {th }} 2013$

亳 Diffractive dissociation of the (virtual) photon at HERA
 Standard DIS

Inclusive and exclusive diffraction

$$
e p \rightarrow e^{\prime} \times p
$$

道 Inclusive and exclusive diffraction

Alternatively:

- require the large rapidity gap (LRG)
- tag the proton with spectrometers
\rightarrow ZEUS Leading Proton Spectrometer (LPS)
\rightarrow H1 Forward Proton Spectrometer (FPS)
\rightarrow H1 Very Forward Proton Spectrometer (VFPS)

Inclusive and exclusive diffraction

$Q^{2}=$ virtuality of photon $=$
$=(4 \text {-momentum exchanged at e vertex })^{2}$
$\mathbf{W}=$ invariant mass of $\mathrm{v}^{*}-\mathrm{p}$ system
$t=(4 \text {-momentum exchanged at } p \text { vertex })^{2}$ typically: $|+|<1 \mathrm{GeV}^{2}$

$M_{X}=$ invariant mass of y^{*}-IP system
$x_{\text {IP }}=$ fraction of proton's momentum carried by IP

B = Bjorken's variable for the IP = fraction of IP momentum carried by struck quark $=x / x_{\text {IP }}$

- Single diffraction/elastic: $N=$ proton
- Double diffraction: proton-dissociative:

$\frac{\square}{z}$ Photon and proton dissociation processes

Elastic
vector meson production

Single diffraction

Proton dissociative vector meson production

Double diffraction

Breit frame (proton very fast)

Y^{\star} probes partonic content of the diffractive exchange
\rightarrow Collinear factorization Diffractive PDFs Generalized PDFs

Proton rest frame

${ }^{*}$ fluctuates into qqbar, qqbarg states (color dipoles) of transverse size proportional to $1 / \sqrt{ }\left(Q^{2}+M_{q q}{ }^{2}\right)$
\rightarrow Dipole models
$\sigma \alpha\left[x g\left(x, Q^{2}\right)\right]^{2}$

Transition soft-hard

Soft - Regge

Hard - QCD

With increasing scale $\left(Q^{2}, M_{V M}, t\right)$
$\sigma(W) \propto W^{\delta}$

- Expect δ to increase from soft (~ 0.2, 'soft Pomeron' value) to hard (~ 0.8, reflecting large gluon density at low x)
$\frac{d \sigma}{d t} \propto e^{-b|t|}$
- Expect b to decrease from soft ($\sim 10 \mathrm{GeV}^{-2}$) to hard ($\sim 4-5 \mathrm{GeV}^{-2}$)

Here scale is $M_{V M}$ - same observed when varying Q^{2} for a given VM

Transition soft-hard,t-slope dependence

As in optical diffraction, size of diffractive cone related to size of interacting objects
$b \sim b_{V M}+b_{p}$

VM production at HERA, what's up

Rich harvest documented by tens of publications Large W interval, wide range of several scales ($Q^{2}, \dagger, M_{V M}$)

Presently H1 and ZEUS are finalizing analyses of post-upgrade data

- key measurements repeated with full statistics
- runs at reduced center of mass energy originally devoted to F_{L} extraction allow studies with different kinematics
- low cross section processes benefit from higher lumi

NEW: Elastic and proton dissociative J/ Ψ photoproduction, [arXiv:1304.5162]
NEW: \dagger-slope extraction in Υ photoproduction [Phys. Lett. B 708 (2012) 14]

Elastic and p-diss J/ Ψ photoproduction ENERGY DEPENDENCE

Cross sections for elastic and p-diss processes measured simultaneously
Two energy ranges: HE ($\sqrt{ }=318 \mathrm{GeV}$) and LE ($\sqrt{ }=225 \mathrm{GeV}$) LE data allow extension to lower W_{yp}

Simultaneous fit to the form $\sigma=N\left(\frac{W_{p p}}{W_{0}}\right)^{\delta}$
$x g\left(x, \mu^{2}\right)=N x^{-\lambda}$
$\delta_{\text {el }} \approx 4 \lambda_{J / \psi}$
$[P L B 662(2008) 252]$$\quad \quad \Lambda_{J / \psi}$ agrees remarkably with $\Lambda_{\text {incl }}$

New LE measurements fill the region between fixed target and previous HERA data
Fixed target data: steeper slope, lower normalisation (?)
Fit to H 1 data extrapolated to higher W_{yp} describes LHCb data

Elastic and p-diss J/ Ψ photoproduction ENERGY DEPENDENCE

Elastic J / ψ photoproduction

LO and NLO fits to previous J/ Ψ measurements at HERA [PLB 662 (2008) 252]
Fits extrapolated to higher W_{yp}
LO fit describes LHCb data

Elastic and p-diss J/ Ψ photoproduction

 t-slope DEPENDENCE

The new data extend the reach to small values of $|t|$

Elastic and p-diss J/ Ψ photoproduction t-slope DEPENDENCE

Simultaneous* fit to the forms
$-\frac{d \sigma_{e l}}{d t}=N_{e l} e^{-b_{d}|t|} \quad$ elastic
$-\frac{d \sigma}{d t}=\left(N_{p d}\left(1+\frac{b_{p d}}{n}\right)|t|\right)^{-n} \quad$ p-diss
*Fit includes old data H1(03) [PLB 568 (2003) 205]

$$
\begin{aligned}
\rightarrow b_{e l} & =4.88 \pm 0.15 \mathrm{GeV}^{-2}(\mathrm{HE}) \\
\mathrm{b}_{\mathrm{pd}} & =1.79 \pm 0.12 \mathrm{GeV}^{-2}(\mathrm{HE}) \\
\mathrm{b}_{e l} & =4.3 \pm 0.2 \mathrm{GeV}^{-2}(\mathrm{LE}) \\
\mathrm{b}_{\mathrm{pd}} & =1.6 \pm 0.2 \mathrm{GeV}^{-2}(\mathrm{LE})
\end{aligned}
$$

Transition soft-hard,t-slope dependence

$$
\frac{d \sigma}{d t} \propto e^{-b|t|}
$$

As in optical diffraction, size of diffractive cone related to size of interacting objects
$b \sim b_{V M}+b_{p}$
J / ψ has small size compared to proton
For p-diss proton breaks $\rightarrow b_{p d}$ is smaller than $b_{e l}$

亳 Elastic $Y(1 S)$ photoproduction t-slope DEPENDENCE

ZEUS

道 Elastic $Y(1 S)$ photoproduction
 t-slope DEPENDENCE

ZEUS

Inclusive diffraction at HERA, what's up

Several publication based on the proton spectrometer method (LPS, FPS) and on the large rapidity gap (LRG) method

H1 LRG	H1 Collab., Eur. Phys. J. C48 (2006) 715 H1 Collab., Eur. Phys. J. C72 (2012) 2074	NEW! See next talk		
ZEUS LRG	ZEUS Collab., Nucl. Phys. B816 (2009) 1		\quad	Consistent results
:---				
from the two methods				
H1 FPS		H1 Collab., Eur. Phys. J. C71 (2011) 1578		
:---	:---	:---		
H1 Collab., Eur. Phys. J. C48 (2006) 749	\quad Comparison H1-ZEUS			

Combining the measurements can provide more precise and kinematically extended data than the individual sets

Proton spectrometer results now combined (first combination in diffraction at HERA!)

Data sets for combination

- H1 FPS HERA II
[Eur.Phys.J. C71 (2011) 1578]
Luminosity $=156.6 \mathrm{pb}^{-1}$
Visible range $|\dagger|=0.1-0.7 \mathrm{GeV}^{2}$
Norm unc $\sim \pm 6 \%$
- H1 FPS HERA I
[Eur.Phys.J. C48 (2006) 749]
Luminosity $=28.4 \mathrm{pb}^{-1}$
Visible range $|\dagger|=0.08-0.5 \mathrm{GeV}^{2}$
Norm unc $\sim \pm 10 \%$
- ZEUS LPS 2
[Nucl.Phys. B816 (2009) 1]
Luminosity $=32.6 \mathrm{pb}^{-1}$
Visible range $|\dagger|=0.09-0.55 \mathrm{GeV}^{2}$
Norm unc ~+11-7\%
- ZEUS LPS 1
[Eur.Phys.J. C38 (2004) 43]
Luminosity $=3.6 \mathrm{pb}^{-1}$
Visible range $|\dagger|=0.075-0.35 \mathrm{GeV}^{2}$
Norm unc ~ $+12 \%-10 \%$

Diffractive reduced cross sections $\sigma_{r}{ }^{D(3)}$

$$
\begin{aligned}
\frac{\mathrm{d}^{2} \sigma^{\text {© } \rightarrow e \mathrm{x}_{\mathrm{P}}}}{\mathrm{~d} \beta \mathrm{~d}^{2} d x_{I P} d t} & =\frac{4 \pi \alpha^{2}}{\beta \mathrm{Q}^{4}}\left[1-\mathrm{y}+\frac{\mathrm{y}^{2}}{2\left(1+\mathrm{R}^{\mathrm{D}}\right)}\right] \cdot \mathrm{F}_{2}^{\mathrm{D}(4)}\left(\beta, \mathrm{Q}^{2}, \mathrm{x}_{\mathrm{I}}, \mathrm{t}\right) \\
& =\frac{4 \pi \alpha^{2}}{\beta \mathrm{Q}^{4}}\left[1-\mathrm{y}+\frac{\mathrm{y}^{2}}{2}\right] \cdot \sigma_{\mathrm{r}}^{\mathrm{D}(4)}\left(\beta, \mathrm{Q}^{2}, \mathrm{x}_{\mathrm{IP}}, \mathrm{t}\right)
\end{aligned}
$$

$$
\sigma_{\mathrm{T}}^{\mathrm{D}(3)}\left(\beta, \mathrm{Q}^{2}, \mathrm{x}_{\mathrm{P}}\right)=\int \sigma_{\mathrm{T}}^{\mathrm{D}(4)}\left(\beta, \mathrm{Q}^{2}, \mathrm{x}_{\mathrm{P}}, \mathrm{t}\right) d t
$$

Combination performed in the ZEUS visible \dagger range $|\dagger|=0.09-0.55 \mathrm{GeV}^{2}$

Prior to combining, ZEUS cross section points swam to $H 1\left(Q^{2}, \beta, x_{\text {IP }}\right)$ grid

Combination method

- χ^{2} minimization which includes full error correlations
[A. Glazov, AIP Conf. Proc. 792 (2005) 237]
- Used for previous combined HERA results [JHEP 1001 (2010) 109]
- Key assumption is that H1 and ZEUS are measuring the same cross sections at the same kinematic points
\rightarrow Model independent check of the data consistency and reduction of the systematic uncertainty

Combination method

- χ^{2} minimization which includes full error correlations
[A. Glazov, AIP Conf. Proc. 792 (2005) 237]
- Used for previous combined HERA results [JHEP 1001 (2010) 109]
- Key assumption is that H1 and ZEUS are measuring the same cross sections at the same kinematic points
\rightarrow Model independent check of the data consistency and reduction of the systematic uncertainty
For a single data set: $\quad \chi_{\text {exp }}^{2}(\vec{m}, \vec{b})=\sum_{i} \frac{\left[m^{i}-\sum_{j} \gamma_{j}^{i} m^{i} b_{j}-\mu^{i}\right]^{2}}{\delta_{i, s t a t}^{2} \mu^{i}\left(m^{i}-\sum_{j} \gamma_{j}^{i} m^{i} b_{j}\right)+\left(\delta_{i, u n c o r} m^{i}\right)^{2}}+\sum_{j} b_{j}^{2}$
μ^{i} measured cross section values
m^{i} combined cross section values
b_{j} shifts of correlated systematic uncertainty sources in σ units
γ_{j}^{i} relative correlated systematic unc.
$\delta_{\text {sat }}^{i}$ relative statistical unc.
$\delta_{\text {uncor }}^{i}$ relative uncorrelated systematic unc.

Full $\chi^{2}{ }_{\text {tot }}$ built from the sum of the χ^{2} exp of each data set, assuming the individual data sets to be statistically uncorrelated
x^{2} tot minimized wrt m^{i} and b_{j}

Uncertainties

- Input cross sections published with their statistical and systematic uncertainties; the latter classified into point-to-point uncorrelated and correlated
- Global normalisations included in the fit
- H1 and ZEUS systematic uncertainties treated as independent
- A few procedural uncertainties considered:
i. additive vs multiplicative nature of the error sources
ii. correlated systematic error sources ZEUS-H1
iii. swimming factors applied to ZEUS points
iv treatment of the uncertainty on the H 1 hadronic energy scale
(in the nominal average taken as correlated separately for $x_{I P}<0.012$ and $x_{I P}>0.012$)

Results

352 data points combined to 191 cross section measurements

Good consistency: $\chi^{2} / n_{\text {dof }}=133 / 161$

Source	Shift $(\sigma$ units)	Reduction factor $\%$
FPS HERA II hadronic energy scale $x_{p}<0.012$	-1.61	56.9
FPS HERA II hadronic energy scaie $x_{p}>0.012$	0.13	99.8
FPS HERA II electromagnetic energy scale	0.49	85.9
FPS HERA II electron angle	0.67	66.6
FPS HERA II β reweighting	0.15	90.4
FPS HERA II x_{p} reweighting	0.05	98.3
FPS HERA II t reweighting	0.70	79.8
FPS HERA II Q^{2} reweighting	0.09	97.6
FPS HERA II proton energy	0.05	45.6
FPS HERA II proton p_{z}	0.62	74.5
FPS HERA II proton p_{y}	0.27	86.5
FPS HERA II vertex reconstruction	0.07	97.0
FPS HERA II background subtraction	0.84	89.9
FPS HERA II bin centre corrections	-1.05	87.3
FPS HERA II global normalisation	-0.39	84.4
FPS HERA I global normalisation	0.81	48.9
LPS 2 hadronic energy scale	-0.02	55.0
LPS 2 electromagnetic energy scale	-0.14	62.4
LPS 2 x_{P} reweighting	-0.32	98.2
LPS 2 t reweighting	-0.26	86.4
LPS 2 background subtraction	0.40	94.9
LPS 2 global normalisation	-0.53	67.7
LPS I global normalisation	0.86	44.1

Table 3: Sources of point-to-point correlated systematic uncertainties considered in the combination. For each source the shifts resulting from the combination in units of the original uncertainty and the values of the final uncertainties as percentages of the original are given.

Influence of several correlated systematic uncertainties reduced significantly for the combined result \dagger

Cross calibration brings average improvement of experimental uncertainty of 27\% wrt most precise single data set (FPS HERA II)

Correlated part of
experimental uncertainty reduced from about 69\% in FPS HERA II to 49\%

Results

352 data points combined to 191 cross section measurements

Good consistency: $x^{2} / n_{\text {dof }}=133 / 161$
Statistical uncertainty: 11\%
Statistical + correlated + uncorrelated: 13.8\%
Procedural uncertainty: 2.9\%
Total uncertainty on cross section 14.3\% on average and 6\% for most precise points
Normalization uncertainty: 4\%

Kinematic coverage extended wrt single input measurements $Q^{2}=2.5-200 \mathrm{GeV}^{2}$

$$
\beta=0.0018-0.816
$$

$$
x_{\mathrm{IP}}=0.00035-0.09
$$

At low $x_{\text {Ip }}$, where the proton spectrometer data are free from proton dissociation background, these combined data provide the most precise determination of the absolute normalisation of the diffractive cross section

H1 and ZEUS

- HERA

- HERA

H1 and ZEUS $\quad 0.09<t \mid<0.55 \mathrm{Gev}^{2}$

Nice and precise measurement of the scaling violation in diffraction

- HERA

In a few words...

In 15 years of running HERA provided unique diffractive data
Presently H1 and ZEUS are

- finalizing analyses of post-upgrade data
- key measurements repeated with full statistics
(J / ψ production, inclusive diffraction)
- low cross section processes benefit from higher lumi
(\curlyvee production)
- combining their data (inclusive diffraction)

Backup

Elastic and p-diss J/ Ψ photoproduction ENERGY DEPENDENCE

Cross sections for elastic and p-diss processes measured simultaneously
Two energy ranges: HE ($\sqrt{s}=318 \mathrm{GeV}$) and LE ($\sqrt{s}=225 \mathrm{GeV}$) LE data allow extension to lower W_{yp}

Combination of decay channels separately for elastic and p-diss processes by X^{2} minimisation with full error treatment

Elastic and p-diss J/ Ψ photoproduction PROTON DISSOCIATION FRACTION

H1 and ZEUS

