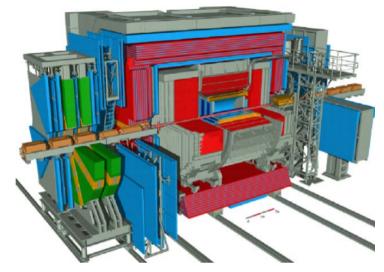
Recent H1 results on Heavy Flavour Photoproduction

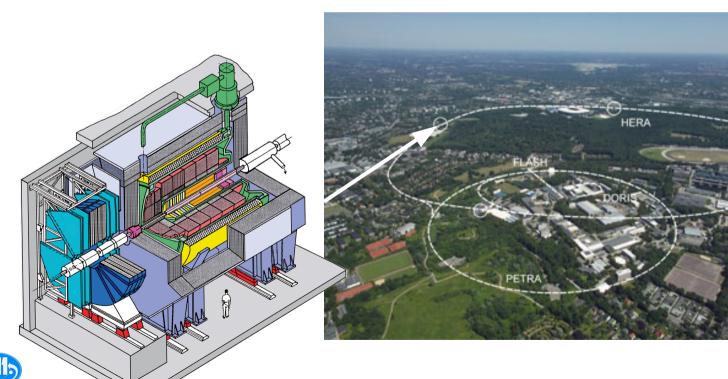
Michel Sauter Ruprecht-Karls-Universität Heidelberg for the H1Collaboration

EPS 2013

The 2013 European Physical Society Conference on High Energy Physics 18-24 July 2013, Stockholm, Sweden

The HERA ep collider (1992 - 2007) at DESY in Hamburg

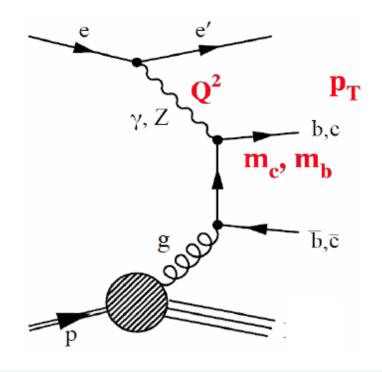

• ep collider:


• e[±] energy: 27.6 GeV

• p energy: 920 GeV

• Center of mass energy: 318 GeV

• 2 collider experiments: H1 and ZEUS



Motivation to measure heavy flavour production

- Charm and beauty quarks at HERA are mainly produced in Photon-Gluon-Fusion
 → sensitive to the gluon in the proton.
- Hard scales for perturbative QCD:
 - $m_{c,b}^2, p_T^2, Q^2$
 - > multi-scale problem, for example combined to $\mu_0 = \frac{1}{2} \sqrt{(m_{b,c}^2 + p_T^2)}$
- Interpretation of heavy flavour measurements:
 - Use the pQCD calculations and constrain the gluon density of the proton.
 - Take the gluon density from elsewhere and test the consistency of the pQCD calculation.

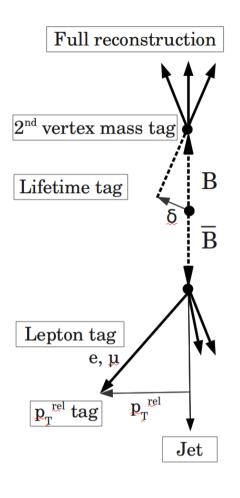
Two kinematic regimes:

• Photoproduction: $Q^2 \approx 0 \text{ GeV}^2$

• Deep Inelastic Scattering: $Q^2 > 1 \text{ GeV}^2$ (scattered electron detected)

QCD models

QCD scheme:


- Massive scheme Fixed Flavour Number Scheme (FFNS):
 - c and b quarks generated dynamically via boson-gluon-fusion.
 - c and b quarks treated massive.
 - Expected to be valid for small scales $\mu^2 \approx m_{b,c}^{2}$

QCD predictions:

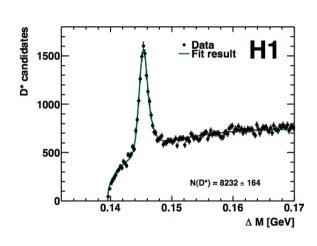
- QCD LO + Parton shower Monte Carlo generators:
 - Collinear factorization, DGLAP evolution (PYTHIA).
 - k_T factorization, CCFM evolution (CASCADE).
 - Used for data corrections and model comparisons.
- QCD NLO calculations:
 - Massive scheme, NLO(α_s^2):
 - FMNR
 - MC@NLO
 - Used for comparisons and extrapolations to full phase space of beauty production.

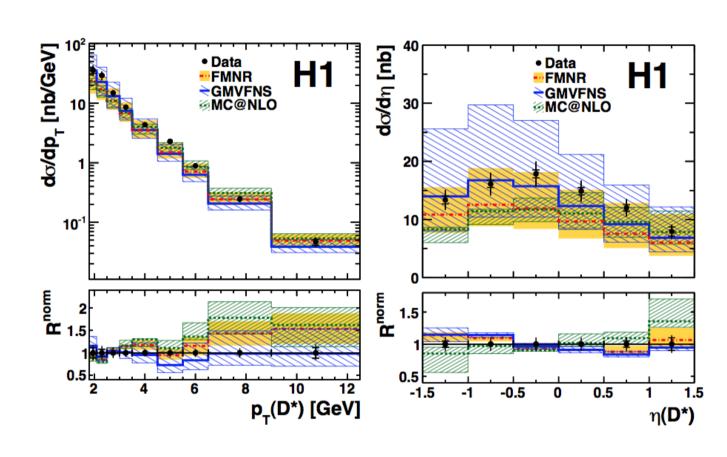
Tagging methods for heavy flavours at HERA

- Rates at HERA behaved like $\sigma(b)$: $\sigma(c)$: $\sigma(uds) \approx 1:50:2000$
- Charm and beauty enrichment is possible with:
 - 1) Full reconstruction
 - Only possible for charm at HERA, eg. $D^* \rightarrow K\pi\pi$.
 - 2) Lepton tagging: Use semileptonic b/c decay channels
 - look for μ or e, high BR(c,b→ lepton + anything)
 - 3) p_{T}^{rel} tagging: b/c quark have large masses
 - look for decay leptons with a high transverse momentum w.r.t the b quark flight direction.
 - 4) Lifetime tagging: b/c quark have long lifetimes:
 - look for displaced vertices.
 - \succ look for tracks with large impact parameters δ.
 - 5) Secondary vertex mass tagging: long lifetime and large masses
 - look for high secondary vertex masses.

Methods used in the analyses discussed today:

- D* analysis: D* reconstruction.
- Low p_T analysis: 2 electrons.
- Muon analysis: 1μ for p_T^{rel} tag, lifetime with large impact parameters δ .




Data sample: $\mathcal{L}=93 \text{ pb}^{-1}$

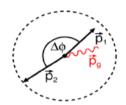
Phase Space $Q^2 \le 2 \text{ GeV}^2$, $p_T^{D^*} \ge 1.8 \text{GeV}$

Charm tagging D* meson reconstruction via:

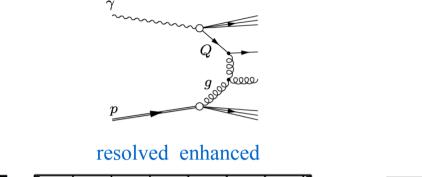
$$D^{*_\pm} \to \ D^0 \, \pi^{_\pm}_{\ slow} \to K^{^\mp} \, \pi^{^\pm} \, \pi^{^\pm}_{\ slow}$$

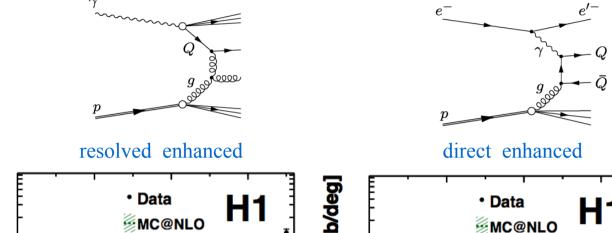
- Very high precision of the data, compared to the uncertainties of the NLO predictions.
- NLO predicted shapes less sensitive to theoretical uncertainties, generally show a reasonable agreement with the data.

Photoproduction of D* and two jets



Data sample: $\mathcal{L}=93 \text{ pb}^{-1}$


Phase Space $Q^2 < 2GeV^2$, $p_T^{D*} > 2.1GeV$ 2 jets with: $p_{T}^{jet 1} > 3.5 \text{ GeV}$


Azimuthal correlation between the two jets, $\Delta\Phi$:

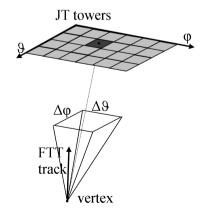
Fraction of the photon energy entering the hard interaction (direct vs resolved), x_s^{obs}:

$$x_{\gamma}^{\text{obs}} = \frac{\sum_{J\text{et1}} (E - p_z) + \sum_{J\text{et2}} (E - p_z)}{\sum_{h} (E - p_z)}$$

MC@NLO predictions below the data for resolved photons, direct contribution reasonably well-described in normalization, shape not well described.

Beauty in photoproduction at low $p_{T}(b)$

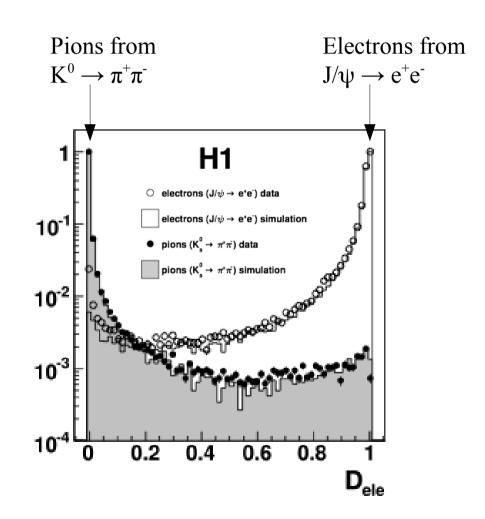
Focus of the measurement:


- Low $p_{T}(b)$ momentum
- Low experimental thresholds
- Extraction of the b-cross section from two low p_T -electrons, $p_T(e) \ge 1 \text{GeV}$

Trigger for low p_{T} -Electrons:

Combination of calorimeter (Jet Trigger) and tracker (Fast Track Trigger):

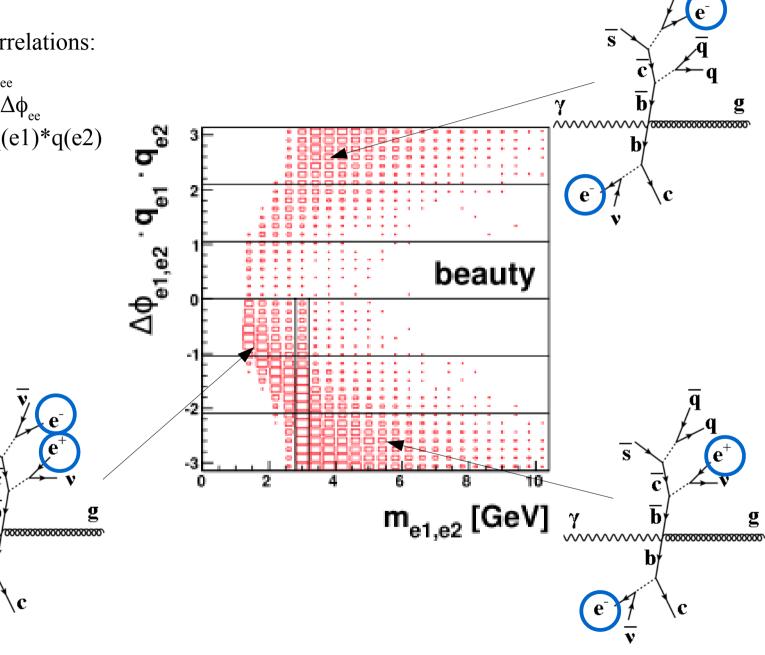
- Topological match
- Cut on $E_{T,JT}/p_{T,FTT}$


Data sample: $\mathcal{L}=48 \text{ pb}^{-1}$

Offline Electron Identification:

Combination of:

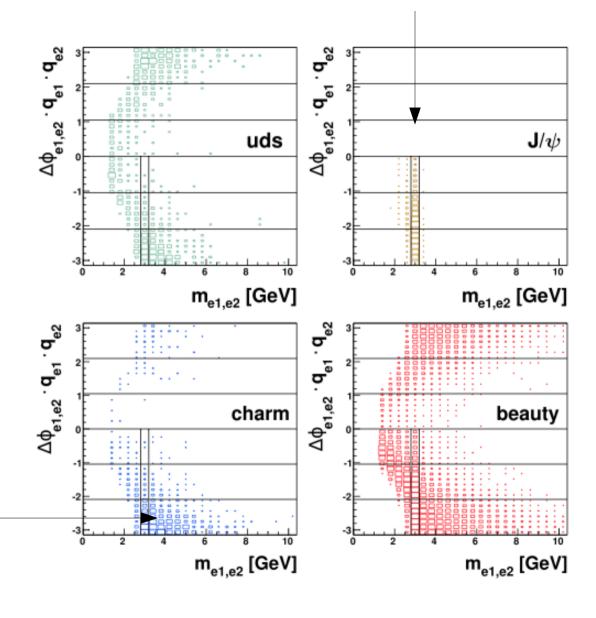
- calorimeter shower profiles
- dE/dx measured in the tracker
- \sim 90% efficiency at a rejection of \sim 99%


A. W. Jung et al., Proc. 15th IEEE-NPSS Real-Time Conference, (2007) 1. B. Olivier et al. Nucl. Instrum. Meth. A 641 (2011) 58.

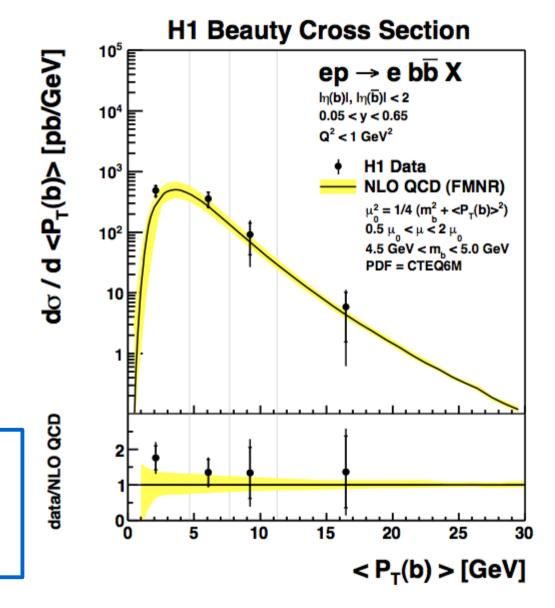
Beauty in photoproduction at low p_T(b)

Heavy Flavour Tagging

- Exploit di-electron correlations:
 - Invariant mass m_{ee}
 - Azimuthal angle $\Delta \phi_{ee}$
 - Charge product q(e1)*q(e2)


Beauty in photoproduction at low $p_{T}(b)$

Heavy Flavour Tagging


- Exploit di-electron correlations:
 - Invariant mass m_{ee}
 - Azimuthal angle $\Delta \phi_{ee}$
 - Charge product q(e1)*q(e2)
- An additional background region (open electron identification cuts) constrains uds.
- Matrix unfolding of the differential beauty cross section (similar to 2d template fit).

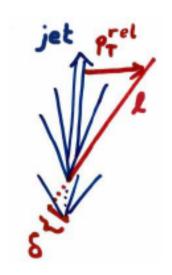
Michel Sauter

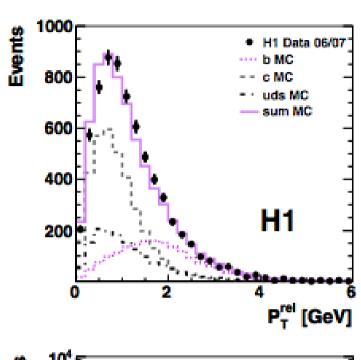
 $J/\psi \to e^+e^- \, mass \, peak$

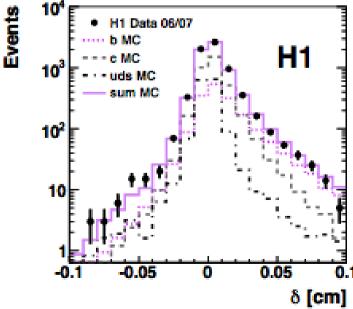
• Differential beauty cross section as function of the mean b quark momentum.

- Access to lowest p_T(b) values ever measured in ep.
- Data in agreement with the NLO calculation, but slightly below.

Data sample: $\mathcal{L}=179 \text{ pb}^{-1}$

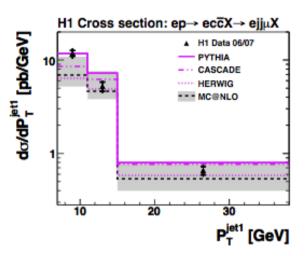

Phase Space

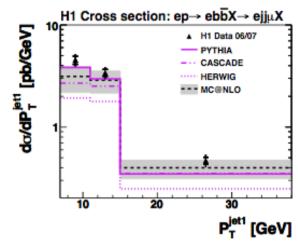

Events with:

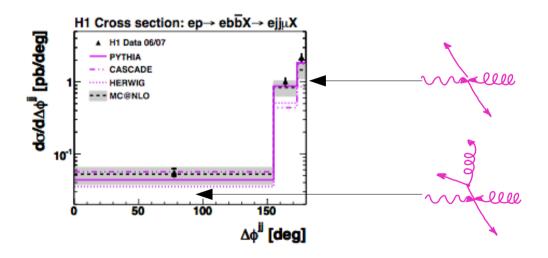

- 1 muon, $p_T^{\mu} > 2.5 \text{ GeV}$
- 2 jets, $p_T^{\text{jet 1(2)}} > 7$ (6) GeV

Heavy Flavour Tagging

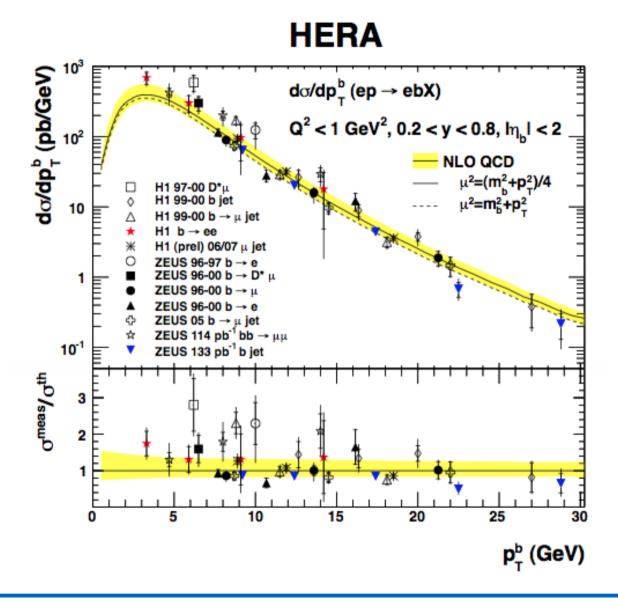
- Momentum relative to μ jet, p_T^{rel} .
- Impact parameter δ .
- 2d template fit.







- Simultaneous measurement of differential charm and beauty jet cross sections.
- Azimuthal angle difference of jets $\Delta \phi^{jj} \rightarrow$ sensitive to higher orders.



- The data are in agreement with NLO calculation (MC@NLO).
- $\Delta \phi^{ij}$ described by all models (LO, NLO).

DESY-12-059, Eur. Phys. J. C72 (2012) 2047

- Many measurements agreeing with each other over a wide $p_{T}(b)$ range.
- General NLO calculation (FMNR) consistent with data.

Summary

- Heavy flavour production at HERA allows to test QCD at different scales.
- New heavy flavour photoproduction measurements of H1 using different experimental techniques and having different systematics are in good agreement.
- The data is in general in agreement with NLO pQCD predictions.

Backup

Heavy Flavor Measurements discussed in this talk:

"Measurement of Inclusive and Dijet D* Meson Cross Sections in Photoproduction at HERA"

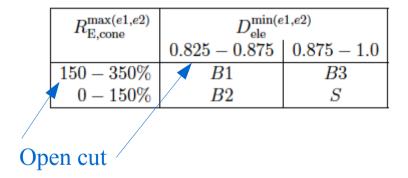
DESY-11-248, H1 Collab., F.D. Aaron et al., Eur. Phys. J. C72 (2012) 1995

"Measurement of Beauty and Charm Photoproduction using Semi-muonic Decays in Dijet Events at HERA"

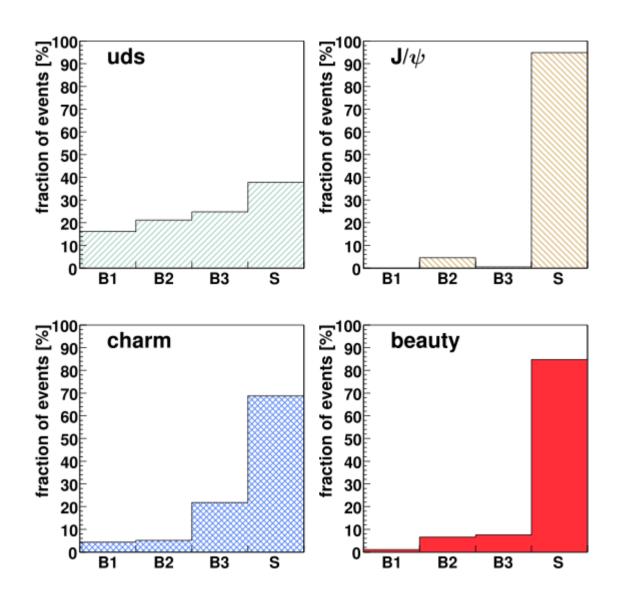
DESY-12-059, H1 Collab., F.D. Aaron et al., Eur. Phys. J. C72 (2012) 2047

"Measurement of Beauty Photoproduction near Threshold using Di-electron Events with the H1 Detector at HERA"

DESY-12-072, H1 Collab., F.D. Aaron et al., Eur. Phys. J. C72 (2012) 2148


EPS 2013

Beauty in photoproduction at low $\overline{p_{T}(b)}$



Heavy Flavour Tagging

- An additional background region (open electron identification cuts) constrains uds.
- Electrons are identified by
 - Electron discriminator, D_{ele}
 - Isolation criterion, R_{E,cone}
- Definition of the background region:

Background templates

