Inclusive DIS at High Q² with Longitudinally Polarized Beams at HERA

L A B O R A T O I R E DE L'ACCÉLÉRATEUR L I N É A I R E

Z. Zhang LAL, Orsay On behalf of the H1 Collaboraton

JHEP 09 (2012) 061

HERA ep collider: largest electron microscope

HERA-1: 1992-2000, unpolarized beams HERA-2: 2004-2007, longitudinally polarized e[±] beams

Inclusive neutral current (NC) and charged current (CC) cross sections:

- Primary source for constraining Parton Distribution Functions (PDFs)
- Essential ingredients for making theoretical predictions at LHC

HERA-2 vs. HERA-1

Lumi e- **7** ~10 Lumi e+ **7** ~3

Neutral and Charged Current DIS

Cross Sections, Structure Functions, PDFs

$$\frac{d^2 \sigma_{\rm NC}^{\pm}}{dx dQ^2} \sim Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3^* \qquad \text{with} \quad Y_{\pm} = 1 \pm (1-y)^2$$

$$\begin{split} & \gamma \operatorname{exchange} \quad \gamma Z \operatorname{interference} \quad Z \operatorname{exchange} \\ \tilde{F}_2 &= F_2 - (v_e - P_e a_e) \kappa_Z F_2^{\gamma Z} + (v_e^2 + a_e^2 - 2P_e v_e a_e) \kappa_Z^2 F_2^Z \\ & v_e \sim 0, \Rightarrow \operatorname{some of the terms are negligible} \\ & x \tilde{F}_3 &= -(a_e - P_e v_e) \kappa_Z x F_3^{\gamma Z} + \left[2 v_e a_e - P_e (v_e^2 + a_e^2) \right] \kappa_Z^2 x F_3^Z \\ & \left[F_2, F_2^{\gamma Z}, F_2^Z \right] = x \sum_q \left[e_q^2, 2e_q v_q, v_q^2 + a_q^2 \right] \left\{ q + \bar{q} \right\} \\ & \kappa_Z^{-1} = \frac{2\sqrt{2}\pi\alpha}{G_F M_Z^2} \frac{Q^2 + M_Z^2}{Q^2} \\ & \left[x F_3^{\gamma Z}, x F_3^Z \right] = 2x \sum_q \left[e_q a_q, v_q a_q \right] \left\{ q - \bar{q} \right\} \\ & \left[\operatorname{Structure function formulae given for e^{-p} scattering, for e^{+p}, P_e \rightarrow -P_e \end{array} \right] \end{split}$$

CC cross sections have similar but different structure functions and PDF combinations

* $F_L=0$ in LO parton model, $F_L\sim g$ at NLO, Scaling violation $F_2 \rightarrow g$

NC Double Differential Cross Sections

NC Polarization Asymmetry

$$A^{\pm} = \frac{2}{P_L^{\pm} - P_R^{\pm}} \cdot \frac{\sigma^{\pm}(P_L^{\pm}) - \sigma^{\pm}(P_R^{\pm})}{\sigma^{\pm}(P_L^{\pm}) + \sigma^{\pm}(P_R^{\pm})}$$

A direct measure of parity violation effect in NC DIS

First measurement $F_2^{\gamma Z}$ extracted from polarized NC cross sections

Improved $xF_3^{\gamma Z}$ using combined HERA-1+2 data

x dependence of $F_2^{\gamma Z}$ and $xF_3^{\gamma Z}$ reflects their parton compositions $F_2^{\gamma Z} \sim q + q bar$ $xF_3^{\gamma Z} \sim xq_v$

CC Double Differential Cross Sections

CC cross sections have strong polarization dependence (P violation), provide unique flavor decomposition of proton

Total CC Cross Sections

HERA-1+2 Combined NC & CC $d\sigma/dQ^2$

New QCD Analysis: H1PDF 2012

In order to see the impact of the new HERA-2 NC+CC high Q² data on PDFs, a NLO QCD fit performed including all published H1 data

	Data set	x_{\min}	x_{\max}	Q^2_{min} (GeV ²)	Q^2_{max} (GeV ²)	δL (%)	Ref.	Comment	
Published earlier HERA data have been the main inputs to all global PDFs fits	e^+ Combined low Q^2	0.00004	0.20	0.5	150	0.5	[72]	$\sqrt{s} = 301, 319 \text{ GeV}$	
	e^+ Combined low E_p	0.00003	0.003	1.5	90	0.5	[72]	$\sqrt{s} = 225, 252 \text{ GeV}$	
	e^{+} NC 94-97	0.0032	0.65	150	30 000	$0.5 \oplus 1.4$	[1]	$\sqrt{s} = 301 \text{ GeV}$	
	e^+ CC 94-97	0.013	0.40	300	15000				
	e^{-} NC 98-99	0.0032	0.65	150	30 000	$0.5 \oplus 1.7$	[2]	$\sqrt{s} = 319 \text{GeV}$	
	e^{-} CC 98-99	0.013	0.40	300	15000			V = 010 00 ·	
	e^- NC 98-99 high y	0.00131	0.0105	100	800			$\sqrt{s} = 319 \text{ GeV}$	
	e^{-} NC 99-00	0.0032	0.65	150	30 000	$0.5 \oplus 1.4$	[3]	$\sqrt{s} = 319$ GeV; incl. high y	
	e^{+} CC 99-00	0.013	0.40	300	15000			$\sqrt{s} = 319 \text{ GeV}$	
	e^+ NC high y	0.0008	0.0105	60	800	$2.3 \oplus 1.0 \oplus 1.1$		$\sqrt{s} = 319 \text{ GeV}$	
New	e^- NC high y	0.0008	0.0105	60	800	$2.3 \oplus 1.2 \oplus 0.8$		$\sqrt{s} = 319 \text{ GeV}$	
	e^+ NC L	0.002	0.65	120	30 000	$2.3 \oplus 1.5$			
	$e^+ \operatorname{CC} L$	0.008	0.40	300	15000			$\sqrt{s} = 319 \text{ GeV}$	
	e^+ NC R	0.002	0.65	120	30 000	$2.3 \oplus 1.5$		V 5 - 015 Ge (
	$e^+ CC R$	0.008	0.40	300	15000				
	e^- NC L	0.002	0.65	120	50000	$2.3 \oplus 1.5$			
	$e^- \operatorname{CC} L$	0.008	0.40	300	30 000			. /s - 319 GeV	
	$e^- \text{ NC } R$	0.002	0.65	120	30 000	$2.3 \oplus 1.5$		V = 015 GCT	
	$e^{-} CC R$	0.008	0.40	300	15000				

The data cover ~5 orders of magnitude in Q^2 and x

Impact of the New HERA-2 Data

10-1

10-1

10-1

v

x

x

EPS'13, July 17-24, Stockholm

HERAFitter based on QCDNUM (v17.04) NLO, MSbar scheme RT heavy flavor mass scheme

5 sets of PDFs with 13 free parameters with quark number and momentum sum rules:

→ Improvement in precision for all PDFs in full x range in particular for down-type quarks xD

Summary

- With the polarized lepton beams at HERA-2, parity violation effects observed/confirmed with improved precision
- > Absence of right-handed CC W boson
- > First $F_2^{\gamma Z}$ and improved $xF_3^{\gamma Z}$ determinations
- NC & CC cross section data valuable for further constraining PDFs
- H1+ZEUS HERA-2 combination will come soon

The universal PDFs extracted from HERA can be directly applied to LHC in the relevant kinematic region through DGLAP Q² evolution