

Hadronic Final States at HERA

A.Baghdasaryan DESY/YerPhI

On behalf of the H1 and ZEUS collaborations

Hadron Structure 2013, Slovakia 1 July 2013

HERA experiments

 Q^2 – photon virtuality (Q^2 > 1 GeV² for DIS) x – Bjorken scaling variable y - inelasticity in proton rest frame

Status: 1-July-2007

٠

•

Hadronic Final States at HERA

Outline

1. Charged particle spectra (H1):

- With proton energy $E_p = 920$ GeV and $\sqrt{s} = 319$ GeV EPJ C73 (2013) 2406
- With proton energy E_p =460 GeV and \sqrt{s} = 225 GeV H1prelim-13-032
- 2. Momentum Distributions for K_{S}^{0} and Λ/Λ (ZEUS):
 - JHEP 03 (2012) 020
- 3. Very Forward Neutron and Photon Production (H1):
 - H1prelim-13-012

Hadron Production at HERA

The underlying dynamics of hadron production in high energy particle interaction is still not fully understood

-4 -

Hadron Factorisation => PDF \otimes ME \otimes Fragmentation Function (FF)

Two classes of analysis presented

- Hadrons detected in the central detectors
 Hadronisation of protons produced by the hard subprocesses (ME)
- Hadrons close to the proton beam direction
 Proton fragmentation

Parton Evolution Models

DGLAP: strong k_T ordering $k_{T0}^2 < \ldots < k_{Ti}^2 < \ldots < Q^2$

- RAPGAP (LO ME + DGLAP parton showers)
- HERWIG++ (POWHEG + DGLAP parton showers)
- Valid for large Q² and not too small x

Beyond DGLAP (random walk in k_T)

-5 -

- CASCADE (off shell ME + CCFM parton showers)
 - Valid for both: large and small x
- DJANGOH (LO ME + CDM parton showers)
 - Valid at low x and not large Q²

Fragmentation parameters tuned to e⁺e⁻ data (ALEPH tune)

HFS and parton cascade dynamics

EPJ C73 (2013) 2406

As $F_2(x,Q^2)$ has little sensitivity to cascade dynamics (DGLAP and beyond-DGLAP) investigations of cascade dynamics in semi-inclusive reactions ep -> e'hX has been conducted at H1 detector at DESY:.

Kinematic region:

HERA beam energies: $E_e = 27.6 \text{ GeV}$, $E_p = 920 \text{ GeV}$, low photon virtuality ($5 < Q^2 < 100 \text{ GeV}^2$). small Bjorken x $(10^{-4} < x < 10^{-2})$

Charged particles spectra are measured as function of pseudorapidity (η^*) and transverse momentum (p^*_{τ}) in hadronic centre-of-mass system (Θ^* with respect to virtual photon)

To distinguish hadronisation effects from effects due to parton evolution signature the measurements are divided into two regions:

- at low p*_T (0<p*_T<1 GeV) predominantly sensitive to hadronisation
- at high p_T^* (1< p_T^* <10 GeV) predominantly sensitive to parton dynamics.

The p_{τ}^* dependence is studied in the pseudorapidity intervals:

 $0 < \eta^* < 1.5$ (central region) $1.5 < \eta^* < 5$ (current region)

-7- **Pseudorapidity distribution (DGLAP model)**

- All predictions are close to data
- LO + parton shower predictions using different p-PDFs at NLO are close to each other
- None of the predictions describe the data

η*

 Differences between predictions for various PDFs are smaller than differences to the data

-8 - Effect of Hadronisation in the DGLAP Model

- Sensitive to tuning of hadronisation parameters
- ALEPH tuning (e⁺e⁻) describes the data best
- Small sensitivity to hadronisation as expected
- Parton dynamics of the RAPGAP model fails to describe the data

Parton Evolution Models

in both p_T^* regions

Transverse momentum distribution

-10 -

- Predictions based on different parton shower dynamics differ significantly at high p*_T.
 - RAPGAP and HERWIG++ (DGLAP) strongly undershoots the data in the central but also in the current region
 - DJANGOH (CDM) provides the best description of experimental data in both p_T^* and η^* regions but still is not good

Charged Particles Spectra at Low \sqrt{s}

H1prelim-13-032

- Use data with reduced proton beam energy $E_p = 460 \text{ GeV}$ to have higher acceptance in η* closer to the central region with better resolution
- High y: 0.35 < y < 0.8
- Low Q²: $5 < Q^2 < 10 \text{ GeV}^2$
- $0 < \eta^* < 3.5$

Detector acceptance 0< n* < 3.5

-12 -

Data and MC Comparison

DJANGOH and RAPGAP describe the shape of η^* distribution well, but none describes the shape of p^*_T spectra

-13 - Charged Particles Density at Low \sqrt{s}

Phenomenological model (A.Bylinkin, A.Rostovtsev) successfully describes p_T spectra as a sum of exponential (Boltzmann-like) and a power-low functions.

Observe transition between two contributions: from power-law distribution in the current region (large η^*) to significant exponential contribution when approaching the proton fragmentation region

The power law contribution is always dominating: >90% at large η*

~ 55% at $\eta^* = 0$

-14 - Scaled Momentum Distributions for K_S⁰ and $\Lambda/\bar{\Lambda}$ in DIS

Fragmentation Functions (FFs) are usually extracted from e⁺e⁻ annihilations into charge hadrons. These data are very precise and predicted cross sections do not depend on PDFs. However,

- they don't provide information about quark and anti-quark contributions to the FFs,
- gluon fragmentation remain largely unconstrained
- these data have poor statistics at large z (momentum fraction of K_{s}^{0})

Aiming to further constrain the FFs, scaled momentum ($x_P = 2P^{Breit}/\sqrt{Q^2}$) distributions in Q² bins were measured in the current region in Breit frame. The distributions are presented as functions of Q² and x_P in the kinematic region of 10 < Q² < 40000 GeV² and 0.001 < x < 0.75.

-15- Scaled Momentum Distributions: K_S⁰

•

ZEUS

- Clear scaling violation: with increasing Q the PS for soft gluon radiation increases, leading to a rise of the number of soft particles with small x_P and decrease at large x_P
- CDM (Ariadne) and MEPS (Lepto) describe the shapes of the distributions well, while overestimating the overall production of K_s^o by 10 to 20%
- NLO QCD models don't describe the data.

Scaled momentum distribution for Λ has similar behavior

Very Forward Neutron and Photon Production in DIS H1prelim-13-012

Measurements of Forward Particles are important for understanding of proton fragmentation mechanism and are interesting for tuning hadron interaction in Cosmic Ray models.

Forward photons and neutrons ($\eta^{LAB} > 7.9$) measured in the FNC Calorimeter (106m from IP)

Forward Photons are produced mainly in π^0 decay from hadronisation of the proton remnant

Very forward, p fragmentation Central Current n^{LAB} >7.9 n*~ 0 **η*~ 2** direction p -direction π^{+} р

n

Forward Neutrons are produced by proton fragmentation and by the π exchange mechanism, p -> n + π^+

Study Feynman x_F distributions at different $\gamma^* p$ CM energies (W): $x_F = p^*_{\parallel} / p^*_{\parallel max} = 2p^*_{\parallel} / W$

Very Forward Photons and Neutrons: Normalised to DIS Cross Section Distribution in W bins

-18- Very Forward Photons and Neutrons: Comparison with the Cosmic Ray Hadronic Interaction Models

- Large difference between the Cosmic Ray model predictions
- None of the models describes simultaneously the photon and neutron measurements

Very Forward Photons and Neutrons: Feynman Scaling Testing

70 < W1 < 130 GeV 130 < W2 < 190 GeV 190 < W3 < 250 GeV

Data consistent with being constant within error => support Feynman Scaling

CR Models show W

-19 -

Summary

Charged Particle

- Transverse momentum and pseudorapidity spectra were measured with H1 detector at HERA at \sqrt{s} = 319 GeV and \sqrt{s} = 225 GeV
- Different tunes of hadronisation parameters were studied in the low p_T* region
- Models with different implementations of parton dynamics (CDM, DGLAP, CCFM) were studied in the high p_T^* region
- DGLAP like models are significantly below the data for $\eta^* < 3$
- DJANGOH (CDM) gives the best description of charged particle spectra
- Phenomenological model for hadron production with an exponential and a power-low contributions has been tested on ep data
- A significant exponential contribution is needed in the central region, but not in the current region => within the model this is a sign for a change in the production dynamics with η*

Strange hadron

- Scaled momentum distributions show scaling violation
- NLO QCD calculations fail to describe the data
- Measurements will further constrain the FFs of quarks, anti-quarks and gluons
- Forward photon and neutron production
- Provide important input for proton fragmentation
- Data constrain proton fragmentation models and Cosmic Ray models
- Photon rate in all MC models significantly overshoot the data
- None of models describes photon and neutron data simultaneously well

-20 -