Proton structure at HERA and relation to LHC

Achim Geiser, DESY Hamburg for the H1 and ZEUS collaborations

Hadron Structure 2013 Tatranské Matliare, Slovakia June 29 - July 4, 2013

 Introduction to DIS
 Inclusive and electroweak results
 (Jets in DIS, α_s) -> see talk S. Mikocki
 Inclusive charm production in DIS, m_c charm in PhP -> S. Mergelmeyer

Conclusions

charm in PhP -> S. MergeImeyer single photons -> O. Kuprash hadronic final states -> A. Baghdasarian HERAFitter -> A. Gizhko

Deep Inelastic ep Scattering at HERA

Charged current vs. neutral current

3.7.13

Electroweak unification

final HERA results completed by

JHEP 1209:061 (2012) PRD 87, 052014 (2013)

Parity violation in charged current DIS

3.7.13

From HERA to LHC

Inclusive DIS at HERA (count every DIS event)

NC event

Unpolarized high Q² Neutral Current scattering

 xF_3 term opposite sign for e^+ and e^-, q and \overline{q} => sensitivity to valence quarks

3. 7. 13

ZEUS final high Q² HERA II results

PRD 87, 052014 (2013)

best precision ~1.5%

agrees with expectations

t-channel weak interaction contribution and γZ interference understood

Polarized Neutral Current Scattering

$$\frac{d^{2}\sigma}{dx \, dQ^{2}} = \frac{2\pi\alpha^{2}}{Q^{4}x} \left\{ \begin{bmatrix} 1 + (1-y)^{2} \end{bmatrix} F_{2}(x, Q^{2}) - y^{2}F_{L}(x, Q^{2}) + Y_{-}xF_{3} \right\}$$

$$F_{2}^{L,R} = \sum_{q} [xq(x, Q^{2}) + x\bar{q}(x, Q^{2})] \cdot A_{q}^{L,R}, \quad \text{photon-Z} \quad Y_{-} = 1 - (1-y)^{2}$$

$$xF_{3}^{L,R} = \sum_{r} [xq(x, Q^{2}) - x\bar{q}(x, Q^{2})] \cdot B_{q}^{L,R}. \quad \text{interference}$$

$$A_{q}^{L,R} = Q_{q}^{2} + 2Q_{e}Q_{q}(v_{e} \oplus a_{e})v_{q}\chi_{Z} + (v_{e} \oplus a_{e})^{2}(v_{q}^{2} + a_{q}^{2})(\chi_{Z})^{2}, \quad \text{additional}$$

$$B_{q}^{L,R} = \bigoplus 2Q_{e}Q_{q}(v_{e} \oplus a_{e})a_{q}\chi_{Z} \pm 2(v_{e} \pm a_{e})^{2}v_{q}a_{q}(\chi_{Z})^{2}, \quad \text{observed}$$

3.7.13

Reduced NC cross sections: $F_2^{\gamma Z}$

H1 Collaboration $F_2^{\gamma Z}$ Transformed to $Q^2 = 1500 \text{ GeV}^2$ • H1 - H1PDF 2012 first measurement 0.5 → Data well ERA described by DGLAP NLO 0 10-1 QCD Х

JHEP 1209:061 (2012)

Cross section polarization asymmetry

increasing Z contribution with increasing Q²
 -> increasing asymmetry, as expected

(these data not included in prediction)

A. Geiser, Proton structure at HERA, HS 13

ZEUS

HERAPDF, LHC predictions

HERAPDF1.5: PDF fit to preliminary version of HERA II inclusive DIS data, performs very well
 example: W asymmetry at LHC

similar performance for jet production

^{3.7.13}

Towards HERAPDF2.0: impact of HERA II

New measurements improve the PDF uncertainties at high x, in particular D=d+s

Including jets in PDF fit

Jets in DIS: see talk S. Mikocki

Adding jet data dramatically decreases the low-x gluon uncertainty, not only the experimental but also the model and parametrization uncertainties

3.7.13

Combination and QCD analysis of charm production cross section measurements in DIS at HERA

technical details: DESY 12-172, EPJ C73 (2013) 2311

- data combination
- PDF fits

- measurement of m_c
- impact on LHC cross sections

3. 7. 13

A. Geiser, Proton structure at HERA, HS 13

ZEUS

Heavy flavour contributions to F₂

Why are heavy flavours important?

- charm contribution to DIS data up to 40%!
- kinematic effect of mass

competing scales for perturbative expansion

e.g. m, Q^2 , $p_T \rightarrow$ terms log Q^2/m^2

$$\log p_T^2/m^2$$
 etc.

- => "massless" treatment allows resummation, but fails near "mass threshold" -> avoid !
- => "massive" treatment gets kinematics right, but does not allow resummation (fixed flavour number schemes) or induces ambiguities in QCD corrections near flavour threshold (variable flavour number schemes)

check different schemes against HERA data

strong charm mass dependence (blue band: 1.35-1.65 GeV)

ZEUS

Fixed Flavour Number Scheme (FFNS)

- no charm in proton
 - full kinematical treatment of charm mass (multi-scale problem: Q², p_T, m_c -> logs of ratios)

+ NLO, $O(\alpha_s^2)$ (+partial NNLO, $O(\alpha_s^3)$) corrections on-shell (pole) or MS mass renormalization

no resummation of logs

comparison to ABM FFNS

28

measurement of \overline{MS} charm mass

Variable Flavour Number Scheme (GM-VFNS)

- very high Q²:
 massless charm in proton
 resummation of log(Q²/m²) etc.
- very low Q²:
 massive calculation (pole mass)

+ NNLO, $O(\alpha_s^2)$ corrections

in between (almost everywhere):
kinematic interpolation and/or correction terms

comparison to various VFNS

more comparisons see paper

as implemented in HERAFitter (talk A. Gizhko)

 m_c (pole) fixed to 1.4 GeV

differences mainly due to different matching schemes of massive and massless parts

+ corresponding additional parameters in interpolation terms

-> we treat mass in VFNS as effective parameter

comparison to various VFNS

3.7.13

A. Geiser, Proton structure at HERA, HS 13

32

Z, W cross section predictions for LHC

Charm data stabilize sea flavour composition

example: RT optimal scheme

H1 and ZEUS

and reduce gluon uncertainty

-> expect reduced uncertainty also for Higgs cross section

3. 7. 13

New charm results in DIS: D* and D⁺ JHEP 05 (2013) 023

H1/ZEUS D* cross section combination

H1/ZEUS D* cross section combination

and with massive NLO QCD calculations

3.7.13

Summary and conclusions

- Final HERA inclusive DIS data have been published by H1 and ZEUS well described by DGLAP NLO (and NNLO) QCD final versions of textbook plots for electroweak unification and lefthandedness of CC
- **Virtual** γ -Z interference has been measured and is well described by Stand Model. Real Z production has been observed (smallest cross section ever measured at HERA)
- HERA DIS Charm data have been combined
 very good consistency, reduced uncertainties, very well described by NLO QCD in FFNS
 -> measure running charm mass (MS): m_c(m_c) = 1.26 ±0.05_{exp} ±0.03_{mod} ±0.02_{αs} GeV
- different VFNS variants prefer different optimal charm masses
 (additional parameter(s) for interpolation between massless and massive calculations)
 –> good description of data with 'optimal' mass in all variants

ZEUS

- **PDF fits including jet and/or charm data significantly reduce PDF uncertainties** (more precise gluon, stabilization of flavour composition)
- -> reduced uncertainties for predictions at LHC
- -> towards including final inclusive DIS data, charm, and jet data in HERAPDF2.0

Backup

Table of different heavy quark schemes

Theory (PDF)	Scheme	Ref.	$F_{2(L)}$	m_c	Massive	Massless	$\alpha_s(m_Z)$	Scale	Included
			def.	[GeV]	$(Q^2{\lesssim}m_c^2)$	$(Q^2 \gg m_c^2)$	$(n_f = 5)$		charm data
MSTW08 NLO	RT standard	[28]	$F^c_{2(L)}$	1.4 (pole)	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s)$	0.12108	Q	[1,4-6,8,9,11]
MSTW08 NNLO					approx $\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^2)$	0.11707		
MSTW08 NLO (opt.)	RT optimised	[31]			$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s)$	0.12108		
MSTW08 NNLO (opt.)					approx $\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^2)$	0.11707		
HERAPDF1.5 NLO	RT standard	[55]	$F^c_{2(L)}$	1.4~(pole)	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s)$	0.1176	Q	HERA inclusive DIS only
NNPDF2.1 FONLL A	FONLL A	[30]	n.a.	$\sqrt{2}$	$\mathcal{O}(\alpha_s)$	$\mathcal{O}(\alpha_s)$	0.119	Q	[4-6, 12, 13, 15, 18]
NNPDF2.1 FONLL B	FONLL B		$F^c_{2(L)}$	$\sqrt{2}$ (pole)	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s)$			
NNPDF2.1 FONLL C	FONLL C		$F^c_{2(L)}$	$\sqrt{2}$ (pole)	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^2)$			
CT10 NLO	S-ACOT- χ	[22]	n.a.	1.3	$\mathcal{O}(\alpha_s)$	$\mathcal{O}(\alpha_s)$	0.118	$\sqrt{Q^2 + m_c^2}$	[4-6, 8, 9]
CT10 NNLO (prel.)		[56]	$F_{2(L)}^{c\bar{c}}$	1.3~(pole)	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^2)$			
ABKM09 NLO	FFNS	[57]	$F_{2(L)}^{c\bar{c}}$	1.18 (MS)	$O(\alpha_s^2)$	-	0.1135	$\sqrt{Q^2 + 4m_c^2}$	for mass optimisation only
ABKM09 NNLO			. /		approx $\mathcal{O}(\alpha_s^3)$	-			

Table 6: Calculations from different theory groups as shown in figures 5-8. The table shows the heavy flavour scheme used and the corresponding reference, the respective $F_{2(L)}$ definition (section 2), the value and type of charm mass used (equation (3)), the order in α_S of the massive and massless parts of the calculation, the value of α_s , the renormalisation and factorisation scale, and which HERA charm data were included in the corresponding PDF fit. The distinction between the two possible $F_{2(L)}$ definitions is not applicable (n.a.) for $\mathcal{O}(\alpha_s)$ calculations.

DESY 12-172, EPJ C73 (2013) 2311

3. 7. 13

some personal remarks

THIS WULK, INLU									
scheme	M_c^{opt}	$\chi^2/n_{ m dof}$	$\chi^2/n_{\rm dp}$						
VFNS	[GeV]	$\sigma_{\rm red}^{NC,CC} {+} \sigma_{\rm red}^{c\bar{c}}$	$\sigma^{c\bar{c}}_{\rm red}$						
RT standard	$1.50 \pm 0.06_{\rm exp} \pm 0.06_{\rm mod} \pm 0.01_{\rm param} \pm 0.003_{\alpha_s}$	630.7/626	49.0/47						
RT optimised	$1.38 \pm 0.05_{\rm exp} \pm 0.03_{\rm mod} \pm 0.01_{\rm param} \pm 0.01_{\alpha_s}$	623.8/626	45.8/47						
ACOT-full	$1.52 \pm 0.05_{\rm exp} \pm 0.12_{\rm mod} \pm 0.01_{\rm param} \pm 0.06_{\alpha_s}$	607.3/626	53.3/47						
S-ACOT- χ	$1.15 \pm 0.04_{\rm exp} \pm 0.01_{\rm mod} \pm 0.01_{\rm param} \pm 0.02_{\alpha_s}$	613.3/626	50.3/47						
ZM-VFNS	$1.60 \pm 0.05_{\rm exp} \pm 0.03_{\rm mod} \pm 0.05_{\rm param} \pm 0.01_{\alpha_s}$	631.7/626	55.3/47						

PDG pole mass

effect smaller at 'NNLO', but will not disappear completely -> in VFNS not fully obvious to use world average to reduce uncertainties -> use "effective" mass values, or live with larger m_c uncertainty?

D* cross section vs. inelasticity y

 good agreement between experiments and with massive NLO QCD calculations
 massless NLO calculation (ZM-VFNS) fails at low y