Real W and Z boson production at HERA

Takuya Nobe
Tokyo Inst. of Technology
on behalf of H 1 and ZEUS Collaborations

2nd International Conference on New Frontiers in Physics (ICNFP2013) 5th Sep 2013

Introduction

- The Standard Model (SM):
excellent description of fundamental particles and interactions among them by Gauge theory

1. electro magnetic (EM) interaction
2. weak interaction
※ unification of EM and weak interactions; electro-weak interaction.
3. strong interaction (QCD)

- Tested for long time by many experiments and good agreement between data/theory

- W and Z boson: mediate weak interaction. Spin=1
- $\mathrm{W}^{ \pm}: \mathrm{m} \sim 80 \mathrm{GeV}$, charged current (CC)
- Z^{0} : m 90GeV, neutral current (NC)

Weak bosons at HERA ep collider

- Important to prove the electro-weak sector in the SM
- Virtual W and Z: studied precisely in high- $\mathrm{Q}^{2} \mathrm{CC}$ and NC Deep Inelastic Scattering (DIS)

- Real W and Z : cross section is very small ($\lesssim 1 \mathrm{pb}$);

Challenging topic!

W/Z production at $\mathbf{e}^{+} \mathbf{e}^{-/ h a d r o n ~ c o l l i d e r s ~}$

- s-channel annihilation provides rich W/Z bosons

CERN Courier May 2004
e^{+}

CDF Collaboration, Phys. Rev. Lett. 108, 151803 (2012)

- \Leftrightarrow HERA ep collision: only from lepton/quark line (conservation of L and B numbers)
\rightarrow small cross section
- Background for physics beyond the SM

HERA

- World only electron-proton collider at DESY
- Operated: 1992-2007
- Center-of-mass energy: 318 GeV
- proton: 920 GeV
- electron(positron): 27.5 GeV
- Recorded integrated luminosity: $\sim 0.5 \mathrm{fb}^{-1}$ per experiment

H1 and ZEUS detectors

- Two general purpose detectors, H1 and ZEUS are constructed at HERA

H1 detector

High resolution EM calorimeter using LAr

- electron $\sigma(\mathrm{E}) / \mathrm{E}=0.11 / \sqrt{\mathrm{E}}$
- hadrons $\sigma(\mathrm{E}) / \mathrm{E} \sim 0.50 / \sqrt{\mathrm{E}}$

ZEUS detector

High resolution hadron calorimeter using Uranium absorber

- electron $\sigma(\mathrm{E}) / \mathrm{E}=0.18 / \sqrt{\mathrm{E}}$
- hadrons $\sigma(\mathrm{E}) / \mathrm{E}=0.35 / \sqrt{\mathrm{E}}$

W production at HERA

Starategy

- \quad SM cross section: $\mathbf{1 . 2 6} \mathbf{~ p b}$
- $\mathbf{1 f b}^{-1}$ data collected with H1 and ZEUS
- High p_{T} isolated lepton (decay branch of $\mathrm{W} \rightarrow \mathrm{lv}$ is $\sim 20 \%$)
- lepton $\mathrm{p}_{\mathrm{T}}>10 \mathrm{GeV}, 15^{\circ}<\theta_{l}<120^{\circ}$, isolation: $\mathrm{D}(l ;$ jet $)>1.0 \& \mathrm{D}(l$; track $)>0.5$
- High missing transverse momentum, \boldsymbol{p}_{T}
- ensure high missing p_{T}, p_{T} measured in calorimeter, $\mathrm{p}_{\mathrm{T}, \mathrm{calo}}>12 \mathrm{GeV}$
- Contributions of new physics:
- rare TGC (triple gauge coupling);
- FCNC (flavor changing neutral current) process of single top; can enhance this mode at higher $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{X}}\left(\mathrm{p}_{\mathrm{T}}\right.$ of additional hadron, X$)$
tree level

anormalous

Results

- 81 events are observed while 87.8 ± 11.0 expected

	$W \rightarrow e v$	$W \rightarrow \mu v$
Selection acceptance by MC	$\sim 30 \%$	$\sim 10 \%$
Purity of $W \rightarrow l v$	$\sim 70 \%$	$\sim 90 \%$

- Observed cross section: $\sigma\left(e p \rightarrow e W^{ \pm} X\right)=1.06 \pm 0.16$ (stat.) ± 0.07 (syst.) pb. in good agreement with the SM prediction of $1.26 \pm 0.19 \mathrm{pb}$

H1+ZEUS combination: pT^{X} disctribution

- 29 events in $\mathrm{p}_{\mathrm{T}}{ }^{\mathrm{X}}>25 \mathrm{GeV}$ in agreement with the SM

H1+ZEUS 1994-2007 $e^{ \pm} p$	$0.98 \mathrm{fb}^{-1}$	Data	SM Expectation			$\begin{gathered} \text { SM } \\ \text { Signal } \end{gathered}$			Other SM Processes		
Electron	Total	61	69.2	\pm	8.2	48.3	\pm	7.4	20.9	\pm	3.2
	$P_{T}^{X}>25 \mathrm{GeV}$	16	13.0	\pm	1.7	10.0	\pm	1.6	3.1	\pm	0.7
Muon	Total	20	18.6	\pm	2.7	16.4	\pm	2.6	2.2	\pm	0.5
	$P_{T}^{X}>25 \mathrm{GeV}$	13	11.0	\pm	1.6	9.8	\pm	1.6	1.2	\pm	0.3
Combined	Total	81	87.8	\pm	11.0	64.7	\pm	9.9	23.1	\pm	3.3
	$P_{T}^{X}>25 \mathrm{GeV}$	29	24.0	\pm		19.7	\pm	3.1	4.3	\pm	0.8

H1+ZEUS combination: pT^{X} disctribution

\mathbf{Z} production at HERA

Phys. Lett. B 718 (2013) 915-921

Strategy

- SM cross section 0.4 pb
- $\sim 0.5 \mathrm{fb}^{-1}$ data collected with ZEUS
- Branching ratio of leptonic decay is too small : $\sim \mathbf{3 \%}$ for each
- Hadronic decay $Z \rightarrow q \bar{q}(70 \%$ branching fraction $)$
- require at least 2 jets with $\mathrm{p}_{\mathrm{T}}>25 \mathrm{GeV}$ and $|\eta|<2.5$
- two leading jets are back-to-back in x-y plane ($\Delta \varphi>2.0$)
- invariant mass, $\mathrm{m}_{\mathrm{jets}}$ is reconstructed by all jets with $\mathrm{p}_{\mathrm{T}}>4 \mathrm{GeV}$ and $|\eta|<2.5$
- To suppress QCD multi-jet background, (quasi-)elastic production, $e p \rightarrow e p^{(*)} Z^{0}$, is selected ($\sigma=\mathbf{0 . 1 6 p b}$)
- Cross section is obtained by a shape fit on $\mathrm{m}_{\mathrm{jets}}$ with signal(MC) + b.g.(Data-Driven) template

(Quasi-)elastic-interaction selection

- Require $\eta_{\text {max }}<3.0$
$※ \eta_{\max }$: maximum pseudo rapidity of energy deposit at calorimeter
$※$ Systematic uncertainty according to this cut is estimated by $\eta_{\max }<(3.0 \pm 0.2)$
- Almost all inelastic events are removed by this

Background shape template

- No $\eta_{\text {max }}$ dependency is found on $m_{j e t s}$ distributions
- Use $\eta_{\max }>3.0$ region as a background template (signal contamination is $<1 \%$)

ZEUS

- Systematic error on b.g. shape template is estimated by performing the fit with several $\eta_{\text {max }}$ slices as a b.g. template

Fitting result

- 55events are observed in $\eta_{\max }<3.0$
- Maximum likelihood fit is performed and $15.0^{+7.0}{ }_{-6.4}$ signals are observed
- Extracted cross section: $\sigma\left(e p \rightarrow e Z^{0} p^{(*)}\right)=0.13 \pm 0.06$ (stat.) ± 0.01 (syst.) pb in agreement with the $\mathrm{SM}(0.16 \mathrm{pb})$.
First measurement of real Z cross section in ep collisions!

Summary

- Measurements of cross sections of W and Z boson in $e p$ collisions have been performed
- Important to test the Standard Model (SM) and as background processes for physics beyond the SM
- Cross sections are expected to be very small : challenging topic
- Total W boson cross section :
$\sigma\left(e p \rightarrow e W^{ \pm} X\right)=1.06 \pm 0.16$ (stat.) ± 0.07 (syst.) pb.
in agreement with the SM : 1.26 pb .
- H1-ZEUS combined $\sim 1 \mathrm{fb}^{-1}$
- Searched in events with isolated lepton and missing transverse momentum
- Z boson cross section in (quasi-)elastic scattering, $e p \rightarrow e Z^{0} p^{(*)}$:

$$
\sigma\left(e p \rightarrow e Z^{0} p^{(*)}\right)=0.13 \pm 0.06 \text { (stat.) } \pm 0.01 \text { (syst.) } \mathrm{pb}
$$

in agreement with the SM: 0.16 pb .

- ZEUS data $\sim 0.5 \mathrm{fb}^{-1}$
- Searched in $Z^{0} \rightarrow$ hadrons events
- This is the first measurement of Z^{0} cross section in ep collisions!

SM prediction of the real W and Z production

- U. Baur, J. A. Vermaseren and D. Zeppenfeld, Nucl. Phys. B375 (1992) 3.
- EPVEC: Monte-Carlo simulated events
- to correct the instrumental effects
- to know selection acceptance
- Three categories to calculate cross section:
- (Quasi-)elastic process : calculated by form factors and structure functions fitted directly to experimental data
- DIS: calculated in the quark-parton model using a full set of leading-order Feynman diagrams.
- Resolved photoproduction : parameterized using a photon structure function and is carefully matched to the DIS region
- Total cross section@NLO at HERA centre-of-mass energy: $\mathbf{1 . 2 6} \mathbf{~ p b}$ for W and $\mathbf{0 . 4 0} \mathbf{~ p b}$ for Z
- $\sim 15 \%$ uncertainty mainly PDF uncertainty

W production: Background components

NC DIS	CC DIS	Dilepton production
Real lepton $+$ fake missing $P T$	Real missing p^{\top} $+$ mis-identified lepton	Real lepton $+$ fake missing $P T$
$\sigma=8000 p b$	$\sigma=40 p b$	$\sigma=30 p b$

- These processes are simulated by MC
- To remove them, series of cuts are applied for example:
- lepton and missing p_{T} should be back-to-back
- measured longitudinal balance: $\delta_{\text {miss }}=2 \mathrm{E}_{\mathrm{e}}{ }^{0}-\Sigma_{\mathrm{i}}\left(\mathrm{E}_{\mathrm{i}}-\mathrm{p}_{\mathrm{Z}, \mathrm{i}}\right) \in[5,50] \mathrm{GeV}$
(if only proton beam direction particles are un-detected, $\delta_{\text {miss }}=0$)

W production: Event selection

H1+ZEUS Isolated Lepton $+P_{T}^{\text {miss }}$ Event Selection	
Channel	Electron Muon
Basic Event Selection	$\begin{gathered} 15^{\circ}<\theta_{\ell}<120^{\circ} \\ P_{T}^{\ell}>10 \mathrm{GeV} \\ P_{T}^{\text {miss }}>12 \mathrm{GeV} \\ P_{T}^{\text {calo }}>12 \mathrm{GeV} \end{gathered}$
Lepton Isolation	$\begin{array}{cc} D(\ell ; \text { jet })>1.0 \\ D(e ; \text { track })>0.5 \text { for } \theta_{e}>45^{\circ} & D(\mu ; \text { track })>0.5 \end{array}$
Background Rejection	

Excess in H1 only result

Eur.Phys.J.C64 (2009) 251-271

W production: H1 only result

H	$\begin{gathered} 1994-2007 e^{+} p \\ 291 \mathrm{pb}^{-1} \end{gathered}$	Data	SM Expectation			$\begin{gathered} \text { SM } \\ \text { Signal } \end{gathered}$			Other SM Processes		
Electron	Total	28	25.6	\pm		18.6	\pm	2.9	6.9	\pm	
	$P_{T}^{X}>25 \mathrm{GeV}$	9	4.32	\pm	0.71	3.56	\pm	0.61	0.76	\pm	0.32
Muon	Total	12	6.7	\pm	1.1	6.1	\pm	1.0	0.55	\pm	0.18
	$P_{T}^{X}>25 \mathrm{GeV}$	8	3.70	\pm	0.63	3.43	\pm	0.60	0.28	\pm	0.09
Combined	Total	40	32.3	\pm	4.4	24.8	\pm	3.9	7.5	\pm	1.8
	$P_{T}^{X}>25 \mathrm{GeV}$	17	8.0	\pm	1.3	7.0	\pm	1.2	1.04	\pm	0.37

H1	$\begin{gathered} 1998-2006 e^{-} p \\ 183 \mathrm{pb}^{-1} \end{gathered}$	Data	SM Expectation			$\begin{gathered} \text { SM } \\ \text { Signal } \end{gathered}$			Other SM Processes		
Electron	Total	11	17.5	\pm		11.6	\pm		5.9	\pm	1.9
	$P_{T}^{X}>25 \mathrm{GeV}$	1	3.18	\pm	0.59	2.23	\pm	0.38	0.95	\pm	0.41
Muon	Total	2	4.29	\pm	0.69	3.96	\pm	0.66	0.33	\pm	0.11
	$P_{T}^{X}>25 \mathrm{GeV}$	0	2.40	\pm	0.41	2.22	\pm	0.39	0.19	\pm	0.06
Combined	Total	13	21.8	\pm	3.1	15.6	\pm		6.2	\pm	1.9
	$P_{T}^{X}>25 \mathrm{GeV}$	1	5.58	\pm	0.91	4.45	\pm	0.75	1.14	\pm	0.44

W production: H1 + ZEUS

H1+ZEUS$1994-2007 e^{+} p \quad 0.59 \mathrm{fb}^{-1}$		Data	SM Expectation			$\begin{gathered} \text { SM } \\ \text { Signal } \end{gathered}$			Other SM Processes		
Electron	Total	37	38.6	\pm	4.7	28.9	\pm		9.7	\pm	1.4
	$P_{T}^{X}>25 \mathrm{GeV}$	12	7.4	\pm	1.0	6.0	\pm		1.5	\pm	0.3
Muon	Total	16	11.2	\pm	1.6	9.9	\pm		1.3	\pm	0.3
	$P_{T}^{X}>25 \mathrm{GeV}$	11	6.6	\pm	1.0	5.9	\pm	0.9	0.8	\pm	0.2
Combined	Total	53	49.8	\pm	6.2	38.8	\pm	5.9	11.1	\pm	1.5
	$P_{T}^{X}>25 \mathrm{GeV}$	23	14.0	\pm	1.9	11.8	\pm	1.9	2.2	\pm	0.4

$\begin{aligned} & \text { H1+ZEUS } \\ & 1998-2006 e^{-} p \end{aligned} \quad 0.39 \mathrm{fb}^{-1} . l$		Data	SM Expectation			$\begin{gathered} \text { SM } \\ \text { Signal } \end{gathered}$			Other SM Processes		
Electron	Total	24	30.6	\pm	3.6	19.4	\pm	3.0	11.2	\pm	1.9
	$P_{T}^{X}>25 \mathrm{GeV}$	4	5.6	\pm	0.8	4.0	\pm	0.6	1.6	\pm	0.4
Muon	Total	4	7.4	\pm	1.1	6.6	\pm		0.9	\pm	0.3
	$P_{T}^{X}>25 \mathrm{GeV}$	2	4.3	\pm	0.7	3.9	\pm	0.6	0.4	\pm	0.2
Combined	Total	28	38.0	\pm	3.4	26.0	\pm		12.0	\pm	2.0
	$P_{T}^{X}>25 \mathrm{GeV}$	6	10.0	\pm		7.9	\pm		2.1	\pm	0.5

W production: other plots

W production: systematic uncertainties

- Systematic uncertainties are considered individual for H 1 and ZEUS, respectively.
- CAL energy scale (EM and hadronic)
- Muon momentum scale
- Track reconstruction
- Trigger
- Luminosity
- MC (theory) uncertainties etc.
- All systematics are treated as correlated
- Totally: 11\% (ZEUS) and 12\% (H1)

Z production: detailed event selection

- CAL ET trigger
- Cleaning cuts for cosmic and beam-gas background
- Jes defined by kt algorithm
- At least 2 jets with $\mathrm{ET}>25 \mathrm{GeV},|\eta|<2.0 . \Delta \varphi \mathrm{j} 1 \mathrm{j} 2>2 \mathrm{rad}$
- Use all jets with $\mathrm{ET}>4 \mathrm{GeV}$ and $|\eta|<2.0$ for invariant mass calculation
- Remove fit if it overlaps with e / γ within $\mathrm{R}<1.0$
- At most 1 electron in detector
- Ee $>5 \mathrm{GeV}$, isolation, track match if in tracking coverage
- $\quad \theta \mathrm{e}<80 \mathrm{deg}$ required
- No particles in rear directrion
- ERCAL<2GeV
- $50<\mathrm{E}-\mathrm{pZ}<64 \mathrm{GeV}$

\mathbf{Z} production: fitting procesure

Fit procedure

- For each bin i on invariant mass $M_{\text {jets }}$

$$
N_{\mathrm{ref}}=a N_{\mathrm{sg}, i}^{\mathrm{MC}}(\epsilon)+b N_{\mathrm{bg}, i}^{\mathrm{data}} \quad M_{\mathrm{jets}}=(1+\epsilon) M_{\mathrm{jets}}^{\mathrm{MC}}
$$

- Poisson likelihood and nuisance parameter

$$
\mathcal{L}=\mathcal{L}_{1}\left(N_{\mathrm{obs}}, N_{\mathrm{ref}}\right) \times \mathcal{L}_{2}\left(\epsilon, \sigma_{\epsilon}\right) \quad \mathcal{L}_{1}=\prod_{i} \frac{\exp \left(-N_{\mathrm{ref}, i,}\right)\left(N_{\mathrm{ref}, i}\right)^{N_{\mathrm{obs}, i}, i}}{N_{\mathrm{obs}, i}!} \text { and } \mathcal{L}_{2}=\exp \left(-\frac{\epsilon^{2}}{2 \sigma_{i}^{2}}\right)
$$

- χ^{2}-like log-likelihood function

$$
\begin{aligned}
\tilde{\chi}^{2} & =-2 \ln \frac{\mathcal{L}_{1}\left(N_{\mathrm{obs}}, N_{\mathrm{ref}}\right)}{\mathcal{L}_{1}\left(N_{\mathrm{obs}}, N_{\mathrm{obs}}\right)}-2 \ln \mathcal{L}_{2}=2 \sum f_{i}+\left(\frac{\epsilon}{\sigma_{\epsilon}}\right)^{2} \\
f_{i} & = \begin{cases}N_{\mathrm{ref}, i}-N_{\mathrm{obs}, i}+N_{\mathrm{obs}, i} \ln \left(N_{\mathrm{obs}, i} / N_{\mathrm{ref}, i}\right) & \text { (if } \left.N_{\mathrm{obs}, i}>0\right) \\
N_{\mathrm{ref}, i} & \text { (if } \left.N_{\mathrm{obs}, i}=0\right)\end{cases}
\end{aligned}
$$

- Minimize χ^{2} to find best set of (a, b, ϵ)

$$
\rightarrow \sigma_{\mathrm{obs}}=a \cdot \sigma_{\mathrm{MC},}, \text { error of } a \text { given by } \Delta \chi^{2}<1
$$

\mathbf{Z} production: systematic uncertainties

- Systematic uncertainties: total (+7.2, -6.2)\%
- acceptance change by $\pm 3 \%$ energy scale: (+2.1, -1.7)\%
- $\eta_{\text {max }}$ cut varied by ± 0.2 : (+6.4, -5.4)\%
- using different $\eta_{\text {max }}$ slices for background template: $\pm 1.5 \%$
- signal template peak width (6 GeV) smeared: negligible
- luminosity: $\pm 2 \%$

Пmax uncertainty

