Inclusive measurements at HERA from low to high x

ISMD2013, Chicago, USA 17th September 2013

> Olaf Behnke (DESY) on behalf of

Content

Charm production

The HERA ep collider (1992-2007)

Deep inelastic scattering at HERA

NC event in H1 detector:

HERA inclusive data sets

Low $Q^2 < \sim 150 \text{ GeV}^2$, high $Q^2 > \sim 150 \text{ GeV}^2$

HER.	AI	e*p	e⁻p
H1	Low Q ²	NC 22 pb ⁻¹	
ŀ	High O^2	NC 100 pb ⁻¹	NC 16 pb ⁻¹
	riigir Q	CC 100 pb ⁻¹	CC 16 pb ⁻¹
ZEUS	Low Q ²	NC 30 pb ⁻¹	
	High Q ²	NC 108 pb ⁻¹	NC 16 pb ⁻¹
		CC 108 pb ⁻¹	CC 16 pb ⁻¹
HERA II		e⁺p	е⁻р
H1	High Q ²	NC 182 pb ⁻¹	NC 150 pb ⁻¹
		CC 182 pb ⁻¹	CC 150 pb ⁻¹
		NC 136 pb ⁻¹	NC 170 pb ⁻¹
ZEUS	High Q ²	CC 132 pb ⁻¹	CC 175 pb ⁻¹

+ further data sets from low E_p runs etc.

HERA inclusive data sets Low $Q^2 < ~150 \text{ GeV}^2$, high $Q^2 > ~150 \text{ GeV}^2$

+ further data sets from low E_p runs etc.

HERA inclusive data sets

Low $Q^2 < \sim 150 \text{ GeV}^2$, high $Q^2 > \sim 150 \text{ GeV}^2$

HERA inclusive data sets

Low $Q^2 < \sim 150 \text{ GeV}^2$, high $Q^2 > \sim 150 \text{ GeV}^2$

+ further data sets from low E_p runs etc.

The HERAPDF1.5 family

H1 and ZEUS HERA I+II Combined PDF Fit xf July 2010 $O^2 = 10 \text{ GeV}^2$ **NLO** HERAPDF1.5 (prel.) 0.8 exp. uncert. model uncert. xu_v HERA Structure Functions Working Group parametrization uncert. 0.6 xg (× 0.05) 0.4 xd_v 0.2 xS (× 0.05) 10⁻³ 10^{-2} **10⁻¹** 10⁻⁴ 1 x

Available at NLO **NNLO** and now (sep. 2013) also at LO

Obtained with the HERA Fitter

open source QCD fit framework, see poster by P. Starovoitov

11

HERAPDF1.5 compared to HERA e⁺p NC data

 \rightarrow Data well described over huge Q² and x range by DGLAP NLO QCD

HERAPDF1.5 predictions for Tevatron

HERAPDF1.5 predictions for (exemplary) LHC jet data

→ Well described by HERAPDF1.5
→ These data yet to be used in PDF fit, carry information on high-x gluon

Can we get PDFs just from the LHC?

At Q2=1.9 GeV2

Using simulated LHC W, Z and jet data with ultimate precision estimated from current experience

 \rightarrow Not with any precision

HERA Charm production and schemes

HERA Charm data combination

- Combine D*, D⁺, D⁰, μ and lifetime tag data
- take correlated systematics fully into account

HERA Charm data combination

Combine D^*, D^+, D^0, μ and

Combined charm data vs NLO GMVFNS

PDF plus charm mass parameter fit

→ Various GM-VFNS: interpolate differently between massive and massless schemes → different quality of charm data description for fixed M_c → compensate by M_c^{opt} values → stabilises flavour mixture in PDF → stabilises LHC predictions (W,Z) (see backup)

Impact of charm data on PDF Example: RT optimal scheme EPJ C73 (2013)

Conclusions

Inclusive DIS

- Final H1 and ZEUS Neutral and Charged Current bulk data sets available since 2012
 - Best precisions of $\sim 1.5\%$ for NC data with Q² from few to 500 GeV²
 - Data well described over large Q² and x range by NLO QCD
 - Ongoing work on final HERA combination
 - HERA Data based PDFs are essential for **predictions** at the LHC, *we recommend* HERAPDF1.5 (NNLO, NLO, now also @LO)

Charm production

- Precise combined HERA charm DIS data \rightarrow test heavy quark mass terms in pQCD:
 - variable flavour number schemes:
 - Data can separate between them, compensate by M_c^{opt}
 - improve sea flavour decomposition
 - Fixed flavour number scheme (not shown, see backup):
 - Provides the best data description
 - Fit running $m_c(m_c) = 1.26 \pm 0.06 \text{ GeV}$
- Further new precise ZEUS charm DIS data: D* and D+ (not shown, see backup):

Backup slides

Charm production at HERA

□ Large contributions to incl. DIS □ Sensitive to g(x)

Charm contribution to DIS: F₂^{cc}

 $rac{d^2 \sigma^{ep}}{dQ^2 dx} \propto F_2(x,Q^2)$

 $\frac{d^2\sigma^{ep\to c\bar{c}}}{dQ^2dx}$ $\propto F_2^{c\bar{c}}(x,Q^2)$

Z,W cross section predictions for LHC EPJ C73 (2013) 2311

H1 and ZEUS

Combined charm data vs ABM FFNS prediction ^{EPJ C73 (2013)}

Use MS running mass NLO+ partial NNLO

→ Very good description everywhere

Fit: PDF plus MS *running* charm mass

EPJ C73 (2013) 2311

Fit combined charm and inclusive DIS data

```
use ABM FFNS
```

 \rightarrow nice and consistent result

Brand new charm results in DIS: D* and D+

DESY-13-054 DESY-13-028

