Precision QCD measurements at HERA

Michel Sauter Ruprecht-Karls-Universität Heidelberg for the H1 and ZEUS Collaborations

Lake Louise Winter Institute 2013

17-23 February 2013, Lake Louise, Canada

Outline:

- Jet production at HERA
 - Extraction of strong coupling constant
- Heavy quark production at HERA
 - Test of perturbative QCD

The HERA ep collider (1992 - 2007)

- ep collider:
- e^{\pm} energy: 27.6 GeV
- p energy: 920 GeV
- Center of mass energy: 319 GeV
- 2 collider experiments: H1 and ZEUS
- Integrated luminosity: ~0.5 fb⁻¹ (per experiment)

Motivation: QCD in ep collisions

- Take the gluon density from somewhere and test the consistency of the pQCD calculation.
- Use the pQCD calculations and constrain the gluon density of the proton. (See talk of Vladyslav Libov)

 $a = q, \overline{q}, g$

Jet Measurements and the strong coupling constant α

• Lab frame:

Breit Frame:

- Boost to Breit Frame, study multi-jet final states as functions of standard DIS kinematics and variables such as:
 - Transverse jet momenta: $p_T w.r.t$ photon direction.
 - Direct sensitivity to alpha s and gluon density

DESY-09-162, Eur.Phys.J. C67 (2010) 1, 11/09

Michel Sauter

- Double differential inclusive jet, dijet and trijet measurements.
- Data well described by NLO prediction with $\mu_r = \sqrt{(Q^2 + P_T^2)/2}$.
- Simultaneous fit to 62 data points to extract strong coupling constant $\alpha_s(Z)$.

- Inclusive jet, dijet and trijet cross sections for $150 < Q^2 < 15000 \text{ GeV}^2$
- Reduced scale dependance compared to low Q² measurement.
- Unfolding of multi-jet cross sections:
- All correlations of observables incorporated.
- Full, party correlated, covariance matrix known.
- ➤ Important input for QCD fits.
- High experimental (~2%) and theoretical (~3.5%) precision.

H1prelim-12-031

Michel Sauter

NLO calculation:

- Jet cross sections: NLOJet++ and FastNLO v2.0
- NC-DIS cross sections: QCDNUM
- NLO \otimes Hadronisation corrections.

Fit to extract strong coupling constant:

- Fits of α_s to each sample (inclusive jet, dijet, trijet) result in good χ^2/NDF .
- Tension between dijets and inclusive/trijets.
- Fit of all three samples with restriction that NLO corrections < 30%

$$\rightarrow \chi^2 / \text{NDF} = 53.2 / 41 = 1.3$$

Normalised multijet cross sections:

• $\alpha_s = 0.1163 \pm 0.0011 \text{ (exp)} \pm 0.0014 \text{ (PDF)} \pm 0.0008 \text{ (had)} \pm 0.0039 \text{ (theo)}$

Jets in Photoproduction

ZEUS

- Double differential measurement in $E_{_{\rm T}}$ and $\eta.$
- Study of different jet algorithms, SIScone, anti-k_T and k_T.

- Extraction of α_s in 21 < E_T < 71 GeV.
- Same conclusions for all jet algorithms.

•
$$\alpha_s(M_Z) = 0.1206^{+0.0023}_{-0.0022}$$
 (exp.) $^{+0.0042}_{-0.0035}$ (th.)

DESY-12-045, Nucl. Phys. B864 (2012), 1-37

Michel Sauter

(pb/GeV)

 $d\sigma/dE_{T}^{jet}$

rel. diff. to NLO

• ZEUS 300 pb⁻¹

Comparison of $\alpha_{c}(Z)$ values

- Competitive experimental errors.
- To do better, need NNLO calculations.

- Hard scales for perturbative QCD:
 - $m_{c,b}^{2}, p_{T}^{2}, Q^{2}$
 - multi-scale problem.

- Aim of these measurements:
 - Test pQCD at <u>different hard scales</u>.
 - Provide input to PDF fits. (see talk of Vladyslav Libov)

Data sample: \mathcal{L} =48 pb⁻¹

Phase Space Events with 2 low p_{T} -electrons with $p_{T}(e) \gtrsim 1 GeV$

Beauty tagging

Two low p_{T} electrons from semileptonic decays:

- Exploit di-electron correlations: •
 - Invariant mass m_{ee}
 - Azimuthal correlation $\Delta \Phi_{ee}$
 - di-electron charge product: q(e1)*q(e2)
- H1 Beauty Cross Section 10⁵ <P₁(b)> [pb/GeV $ep \rightarrow e b\overline{b} X$ $h_{(b)}|, h_{(b)}| < 2$ 10⁴ 0.05 < y < 0.65 $Q^2 < 1 \text{ GeV}^2$ H1 Data 10³ NLO QCD (FMNR) $\mu_{2}^{2} = 1/4 (m_{1}^{2} + \langle P_{T}(b) \rangle^{2})$ 0.5 μ < μ < 2 μ 10² .5 GeV < m, < 5.0 GeV do/d PDF = CTEQ6M10 data/NLO QCD 10 15 20 25 5 $< P_T(b) > [GeV]$
- Access to lowest $p_{T}(b)$ values ever measured in ep.
- Agreement between data and NLO calculation (FMNR).

DESY-12-072, Eur. Phys. J. C72 (2012) 2148, 06/12

Michel Sauter

30

HERA

- Many measurements confirming each over a wide $p_{T}(b)$ range.
- General good agreement between data and NLO calculation (FMNR).

ZEUS

Data sample: $\mathcal{L}=93 \text{ pb}^{-1}$

- Very high precision of the data, compared to the uncertainties of the NLO predictions.
- NLO predicted shapes less sensitive to theoretical uncertainties, generally show a reasonable agreement with the data.

DESY-11-248, Eur. Phys. J. C72 (2012) 1995

D* production in DIS

ZEUS

DESY-11-066, Phys.J.C71 (2011) 1769 ZEUS-prel-11-012

Michel Sauter

The ZM-VFNS calculation overshoots the data at low y.

Inclusive charm quark jets in DIS

Phase Space $5\text{GeV}^2 < Q^2 < 1000 \text{ GeV}^2$ Events with ets with:

 $E_{T}^{jet \ 1(2)} > 4.2 \text{ GeV}$

Heavy Quark tagging Reconstruction of secondary vertices:

- Mass of tracks associated with the secondary vertex.
- Decay length significance
 S = DL / σ(DL)

• Good agreement between data and NLO QCD calculation (HVQDIS) observed in different kinematical regions.

ZEUS-prel-12-002

Summary:

- Measurement of jet and heavy quark production at HERA allow stringent test of QCD.
- Recent HERA data on:
 - Inclusive jets, dijets, trijets measurements in DIS and Photoproduction allow to extract the strong coupling constant α_{s} .
 - Charm and Beauty production measurements test pQCD at various scales.

Conclusions:

- pQCD calculations in general describe the data over a wide range.
- Precision on α_{s} extractions:
 - Competitive with data from other experiments.
 - Often dominated by the theoretical uncertainties.