

Measurement of charm fragmentation fractions in PHP and the production of the excited charm mesons at HERA

V. Aushev, DESY/KNU (On behalf of the ZEUS collaboration)

The International Workshop on Low-x Physics 2013 June 4th 2013 (Rehovot/Eilat, Israel)

Charm meson spectroscopy

• Charm systems are the most interesting case during the last decade, after unexpected discoveries (BaBar and Belle):

<u>**2003**</u>: $D_{s0}^*(2317)^+ \to D_s^+ \pi^0$ and $D_{s1}(2460)^+$

<u>2006-2007</u>: $D_{s1}^*(2710)^+$ and $D_{sJ}^*(2860)^+$ These states confirmed recently by LHCb.

• J = L + S

L=0: Doublet with $(0^-, 1^-)$: (D, D^*)

L=1: Two doublets: $J^P = (0^+, 1^+)$: (D_0^*, D_1') $J^P = (1^+, 2^+)$: (D_1, D_2^*)

Ground states: D⁰, D^{*+} and D⁺

04.06.2013, Workshop on Low-x Physics

Charm mesons at HERA

- boson-gluon fusion is a dominant process for the charm creation in DIS;
- charm contribution to the inclusive DIS cross section is up to 30% at HERA;
- charm production sensitive to the gluon density of the proton;
- possibility to test pQCD;
- better understanding of the charm is one of the key issues for LHC experiments;

New charm meson results from ZEUS

• excited charm meson masses, widths, angular distributions, branching ratios and charm quark fragmentation fractions

measured for: $D_1^0(2420), D_2^{*0}(2460)$ $D_1^+(2420), D_2^{*+}(2460)$

these mesons were reconstructed in the decay channels with D^0 , D^{*+} and D^+

Published in Nuclear Physics B v. 866, 3, 2013

fractions of charm quarks hadronising as a particular charm hadrons

derived for: D^* , D^+ , D^0 , D_s^+ and Λ_c

• 373 pb⁻¹ data sample (full statistics HERA II)

Excited Charm Production

04.06.2013, Workshop on Low-x Pphysics

3-prong and 5-prong *D*^{*+} **decay reconstruction**

ZEUS

ZEUS

<u>Yellow area:</u> D* in the mass range 0.144<ΔM < 0.147 GeV combined with an additional track, assumed to be π^{\pm}

 \rightarrow for the excited charm meson reconstruction;

04.06.2013, Workshop on Low-x Physics

D⁺ and **D**⁰ decay reconstruction

ZEUS

ZEUS

<u>Yellow area</u>: D⁺ and D⁰ in these mass ranges combined with additional π^{\pm} for the excited charm meson reconstruction O4.06.2013, Workshop on Low-x Physics V. Aushev Charm mesons at HERA

$D^*\pi^-$ and $D^+\pi^-$ mass spectra

ZEUS

04.06.2013, Workshop on Low-x Physics

$D^*\pi^-$ and $D^+\pi^-$ mass spectra in cos α bins

ZEUS

Results of the simultaneous fit for the yields, masses, widths and helicity parameters of the neutral D-mesons

	HERA II	HERA I	PDG
$N(D_1^0 \to D^{*+}\pi)$	2732 ± 285	3110 ± 340	
$N(D_2^{*0} \to D^{*+}\pi)$	1798 ± 293	870 ± 170	
$N(D_2^{*0} \to D^+\pi)$	$521 \pm 88 \ (S(D^+) > 3)$	690 ± 160	
$M(D_1^0), \mathrm{MeV}$	$2423.1 \pm 1.5^{+0.4}_{-1.0}$	$2420.5 \pm 2.1 \pm 0.9$	2421.3 ± 0.6
$\Gamma(D_1^0), { m MeV}$	$38.8 \pm 5.0^{+1.9}_{-5.4}$	$53.2 \pm 7.2^{+3.3}_{-4.9}$	27.1 ± 2.7
$h(D_{1}^{0})$	$7.8_{-2.7-1.8}^{+6.7+4.6}$	$5.9^{+3.0+2.4}_{-1.7-1.0}$	
$M(D_2^{*0}), $ MeV	$2462.5 \pm 2.4^{+1.3}_{-1.1}$	$2469.1 \pm 3.7^{+1.2}_{-1.3}$	2462.6 ± 0.7
$\Gamma(D_2^{*0}), \mathrm{MeV}$	$46.6 \pm 8.1^{+5.9}_{-3.8}$	43 fixed	49.0 ± 1.4

Results are compared to earlier ZEUS results at HERA I and PDG: Good consistency with older results and PDG.!

04.06.2013, Workshop on Low-x Physics

Results of the simultaneous fit for the yields, masses, widths and helicity parameters of the charged D-mesons

	HERA II	PDG
$N(D_1^+ \to D^{*0}\pi^+)$	759 ± 183	
$N(D_2^{*+} \to D^{*0}\pi^+)$	634 ± 223	
$N(D_2^{*+} \to D^0 \pi^+)$	737 ± 164	
$M(D_1^+), \mathrm{MeV}$	$2421.9 \pm 4.7^{+3.4}_{-1.2}$	2423.4 ± 3.1
$\Gamma(D_1^+), { m MeV}$	25 fixed	25 ± 6
$h(D_1^+)$	3.0 fixed	
$M(D_2^{*+}), \mathrm{MeV}$	$2460.6 \pm 4.4^{+3.6}_{-0.8}$	2464.4 ± 1.9
$\Gamma(D_2^{*+}), \mathrm{MeV}$	37 fixed	37 ± 6
$h(D_2^{*+})$	-1.0 fixed	

Good consistency with PDG

Only few previous results on D_1^+ (BABAR and CLEO)

04.06.2013, Workshop on Low-x Physics

Indication of S- and D-wave mixing

ZEUS

04.06.2013, Workshop on Low-x Physics

Fragmentation fraction measurements Fragmentation fractions: $f(c \rightarrow D) = \frac{N(D)}{N(c)}$

$$\begin{split} f(c \to D_2^{*0}) &= 3.9 \pm 0.9 (\text{stat.})_{-0.6}^{+0.8} (\text{syst.}) \% \\ f(c \to D_1^0) &= 2.9 \pm 0.5 (\text{stat.}) \pm 0.5 (\text{syst.}) \% \\ f(c \to D_1^+) &= 4.6 \pm 1.8 (\text{stat.})_{-0.3}^{+2.0} (\text{syst.}) \% \\ f(c \to D_2^{*+}) &= 3.2 \pm 0.8 (\text{stat.})_{-0.2}^{+0.5} (\text{syst.}) \% \end{split}$$

First measurements!

For comparison:

	$f(c \rightarrow D_1^0)$	$f(c \rightarrow D_2^{*0})$
Hera-I	$3.5\pm0.4^{+0.4}_{-0.6}$	$3.8\pm0.7^{+0.5}_{-0.6}$
Opal ³	$2.1\pm0.7\pm0.3$	$5.2\pm2.2\pm1.3$

ZEUS measurements of fragmentation fractions are the most precise and supports fragmentation universality.

04.06.2013, Workshop on Low-x Physics

Branching ratios

	$\frac{\mathcal{B}_{D_2^{*0} \to D^+ \pi^-}}{\mathcal{B}_{D_2^{*0} \to D^{*+} \pi^-}}$	$\frac{\mathcal{B}_{D_2^{*+} \to D^0 \pi^+}}{\mathcal{B}_{D_2^{*+} \to D^{*0} \pi^+}}$
HERA-II	$1.4\pm0.3^{+0.3}_{-0.3}$	$1.1\pm0.4^{+0.3}_{-0.2}$
HERA-I	$2.8\pm0.8^{+0.5}_{-0.6}$	
PDG	1.56 ± 0.16	$1.9\pm1.1\pm0.3$

Consistent with PDG and theoretical calculations* : ~ 2.3 for both ratios

* Phys. Rev. D 86 (2012) 054024

04.06.2013, Workshop on Low-x Physics

Measurement of charm fragmentation fractions in photoproduction

04.06.2013, Workshop on Low-x Pphysics

- Determined fragmentation fractions of charm hadrons with HERA II data(372pb⁻¹), i.e. the probability of c-quark to hadronize into particular charm meson $f(c \rightarrow D^0, D^+, D_s^+, D^{*+}, \Lambda_c)$
- Kinematic range: transverse momentum p_T(D⁰, D⁺, D_s⁺, D^{*+}, Λ_c) and pseudorapidity η(D⁰, D⁺, D_s⁺, D^{*+}, Λ_c);
- Significantly suppressed background using microvertex detector (MVD);

D⁺ and D^{*} spectra

17

D⁺ and D^{*} spectra

 $D^0 \rightarrow K^- \pi^+$

New		ZEUS (γp) (prel.) HERA II	ZEUS (γp) HERA I	
results		stat. syst. br.	stat. syst. br.	
>	$f(c \rightarrow D^+)$	$0.232 \pm 0.006 \ \substack{+0.005 \\ -0.006 \ -0.010}^{+0.009}$	$0.222 \pm 0.015 \ {}^{+0.014}_{-0.005} \ {}^{+0.011}_{-0.013}$	
	$f(c \rightarrow D^0)$	$0.590 \pm 0.016 \ {}^{+0.011}_{-0.007} \ {}^{+0.013}_{-0.019}$	$0.532 \pm 0.022 \stackrel{+0.018}{_{-0.017}} \stackrel{+0.019}{_{-0.028}}$	
	$f(c \rightarrow D_s^+)$	$0.089 \pm 0.005 \ {}^{+0.002}_{-0.007} \ {}^{+0.005}_{-0.005}$	$0.075 \pm 0.007 \stackrel{+0.004}{_{-0.004}} \stackrel{+0.005}{_{-0.005}}$	
	$f(c \rightarrow \Lambda_c^+)$	$0.078 \pm 0.012 \ {}^{+0.005}_{-0.009} \ {}^{+0.024}_{-0.014}$	$0.150 \pm 0.023 \stackrel{+0.014}{_{-0.022}} \stackrel{+0.038}{_{-0.025}}$	
	$f(c \rightarrow D^{*+})$	$0.234 \pm 0.006 \ \substack{+0.004 \\ -0.004 \ -0.007 \ }^{+0.005}$	$0.203 \pm 0.009 \stackrel{+0.008}{_{-0.006}} \stackrel{+0.007}{_{-0.010}}$	

The obtained precision is competitive with results in e+e- collisions!

	H1 (DIS) [2]	Combined	ZEUS (DIS) $[3,4]$
		e^+e^- data [5,6]	HERA I
	$stat. \oplus syst.$ br.	stat. \oplus syst. br.	stat. syst. br.
$f(c \to D^+)$	$0.204 \pm 0.026 \begin{array}{c} +0.009 \\ -0.010 \end{array}$	$0.222 \pm 0.010 \stackrel{+0.010}{_{-0.009}}$	$0.217 \pm 0.018 \begin{array}{c} ^{+0.002}_{-0.019} \begin{array}{c} ^{+0.009}_{-0.010} \end{array}$
$f(c \to D^0)$	$0.584 \pm 0.048 \begin{array}{c} ^{+0.018}_{-0.019} \end{array}$	$0.544 \pm 0.022 \stackrel{+0.007}{_{-0.007}}$	$0.585 \pm 0.019 \begin{array}{c} ^{+0.009}_{-0.052} \begin{array}{c} ^{+0.018}_{-0.019} \end{array}$
$f(c \to D_s^+)$	$0.121 \pm 0.044 \stackrel{+0.008}{_{-0.008}}$	$0.077 \pm 0.006 \stackrel{+0.005}{_{-0.004}}$	$0.086 \pm 0.010 \begin{array}{c} ^{+0.007}_{-0.008} \begin{array}{c} ^{+0.005}_{-0.005} \end{array}$
$f(c \to \Lambda_c^+)$		$0.076 \pm 0.007 \stackrel{+0.027}{_{-0.016}}$	$0.098 \pm 0.027 \begin{array}{c} ^{+0.020}_{-0.017} \begin{array}{c} ^{+0.025}_{-0.023} \end{array}$
$f(c \to D^{*+})$	$0.276 \pm 0.034 \begin{array}{c} ^{+0.009}_{-0.012}$	$0.235 \pm 0.007 \stackrel{+0.003}{_{-0.003}}$	$0.234 \pm 0.011 \begin{array}{c} ^{+0.006}_{-0.021} \begin{array}{c} ^{+0.007}_{-0.010} \end{array}$

04.06.2013, Workshop on Low-x Physics

The fragmentation fractions of charm quarks are independent of the production process and supports the hypothesis of universality of heavy quark fragmentation

04.06.2013, Workshop on Low-x Physics

Conclusions

- Charm systems are interesting in the light of recent progress on open charm spectroscopy;
- ZEUS continues to produce new interesting results in the field of charm meson spectroscopy in *ep*-collisions:

- excited charm studies: new measurements of masses, widths, helicity, ratios of branching fractions and the fractions of c-quarks hadronising into D_1 and D_2^* states.

- production of D^0 , D^+ , D_s^+ , D^{*+} , Λ_c : fragmentation fractions of charm quarks are independent of the production process;

All results support the hypothesis that fragmentation proceeds independently of the hard sub-process.