Strangeness Production in Deep-Inelastic ep Scattering at HERA

Khurelbaatar Begzsuren, DESY (on behalf of the H1 collaboration)

Low X-2013, Rehovot-Eilat, Israel

DIS process at HERA

HERA: $\sqrt{s} = 319 \, GeV$

DIS event at low Q^2

 Q^2 - photon virtuality x- Bjorken scaling variable y- Inelasticity in proton rest frame for a fixed center-of-mass energy: $Q^2 = xys$

Strange production mechanism

All mechanisms contribute significantly Measurements of strange particle production (K^0_s , Λ): -understanding QCD -test of models of fragmentation/hadronisation -optimisation of the Monte Carlo parameters -test of λ_s universality

Monte Carlo simulation

Djangoh, Rapgap- hard partonic processes at the Born level at leading order in α_s Higher order QCD effects: CDM in Djangoh MEPS in Rapgap

JETSET - hadronisation process in the Lund string fragmentation model:

 $\lambda_s = 0.286$, $\lambda_{qq} = 0.108$, $\lambda_{sq} = 0.690$ tuned to e^+e^- data (ALEPH)

$K^0_{\ s}$ and Λ visible cross sections

5

120 pb

144 pb

 $σ_{vis}$ (ep→eΛX) MEPS

۸ _S	0.200
$\sigma_{vis}(ep \rightarrow eK^0_sX) CDM$	9.88 nb
$\sigma_{vis}(ep \rightarrow eK^{0}_{s}X) MEPS$	10.93 nb

$K^0_{\ S}$ differential cross-sections at low Q^2

MEPS(Rapgap) describes Q^2 and η CDM(Djangoh) slightly below the data Both models fail to describe the P_{T} dependence

Ratio of K⁰_s to charged particles

 p_{T} shape of the ratio is not described Large sensitivity on λ_{s}

Λ differential measurement at high Q^2

Best description is obtained for MEPS with $\lambda_s = 0.220$

The cross sections fall rapidly with Q^2 and $p_{_{\rm T}}$

The models follow the general behaviour of data, but some differences are seen

Λ production to DIS cross-section ratio

Best description is obtained by CDM(Djangoh) for $\lambda_s = 0.220$

Data do not show any evidence for a non-vanishing asymmetry in the Λ phase space region investigated

Conclusions

K^0_{s} production at low Q^2 :

-MEPS(Rapgap) gives a reasonable description of the data in Q^2 , η but predicts a softer spectrum in Pt

-CDM(Django) reasonable in shape, but below the data K_{s}^{0}/h^{\pm} ratio:

-CDM(Django) good description in K_{S}^{0}/h^{\pm} yield for $\lambda_{S} = 0.286$

-good description at small Pt, but fails at higher Pt

 $-K^{0}_{s}/h^{\pm}$ shows large sensitivity for determining λ_{s}

- Λ Production at high Q²:
- -The measured visible Λ cross section is found to be described best by CDM using $\lambda_s = 0.220$ and the MEPS model using $\lambda_s = 0.286$
- When investigating the Λ production to DIS cross section ratio the best agreement is observed for the CDM with $\lambda_s = 0.220$
- - Λ - $\overline{\Lambda}$ Asymmetry is found to be consistent with zero