Diffractive dijet photoproduction with a leading proton at HERA

Alice Valkárová Charles University, Prague

on behalf of H1 Collaboration

Eilat 8.4.2011

HERA collider experiments

- 27.5 GeV electrons/positrons on 920 GeV protons $\rightarrow Js$ =318 GeV
- two experiments on colliding beams: H1 and ZEUS
- HERA I,II: ~ 500 pb⁻¹ per experiment
- closed July 2007, still data to analyse.....

Historical reminder

- 20 years after the observation of diffractive DIS events at HERA!
- HERA opened new era of diffraction studies

Diffractive kinematics

 $M_y = m_p$ proton stays intact, needs detector setup to detect protons

 $M_y > m_p$ proton dissociates, contribution should be understood

Two kinematic regions of diffractive events:

2.6.2013

Q²~0 GeV² \rightarrow photoproduction Q²>>0 GeV² \rightarrow deep inelastic scattering (DIS)

HERA: ~10% of events diffractive

$$x_{\rm IP} = \frac{q \cdot (p - p')}{q \cdot p} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2} - \frac{Q^2 + M_X^2}{Q^2 + W^2}$$

momentum fraction of color singlet exchange

$$\beta = \frac{x}{x_{IP}} \approx \frac{Q^2}{Q^2 + M_X^2} \longrightarrow$$

fraction of exchange momentum, coupling to γ

$$\frac{t = (p - p')^2}{squared} \rightarrow 4$$
-momentum transfer

Methods of diffraction selection

Different phase space and systematics - non-trivial to compare!

DPDFs in DIS

DPDFs obtained by H1 and ZEUS from inclusive, dijet (and D* measurements....) DPDFs used in HERA analyses - H1 fit B, H1 fit Jets, ZEUS fit SJ Main differences are in gluonic part.

Photoproduction, γ^*p , $Q^2 \rightarrow 0$

Dijets in photoproduction-history

New analysis -dijets in PH with a leading proton

- 2006/07 e⁺p H1 data, integrated lumi ~ 30pb $^{-1}$
- Proton measured in Very Forward Proton Spectrometer -> My=Mp
- Untagged photoproduction (events without visible electron)
- 2 stations 218 and 222m from the interaction point
- High track reconstruction efficiency ~96%, low background, <1%

Phase-space definition $Q^2 < 2 \text{ GeV}^2$ 0.2 < y < 0.8 k_T jet algorithm: $E_T^{\text{jet1}(2)} > 5.5(4) \text{ GeV}$ $-1 < \eta^{\text{jet1},2} < 2.5$ Diffractive: $0.010 < x_{IP} < 0.024$ $|t| < 0.6 \text{ GeV}^2$ $M_Y = M_p$

~ 4800 events

2.6.2013

Differential cross sections - x_v

No obvious dependence of suppression on x_v

Large theoretical uncertainties connected with the DPDF uncertainty and scale variation.

2.6.2013

Differential cross sections - z_{TP}

H1 VFPS Data

10

5.5

LO MC RAPGAP prediction too low.....

Dependence on E_T cannot be excluded, within large theor. uncertainties

10

14

2.6.2013

14.5

E^{jet1}_T [GeV]

Conclusions

- Differential cross section of dijet diffractive photoproduction for events with leading proton measured.
- Data cross section suppressed by factor about 0.67 in comparison to NLO QCD calculations.
- Previous H1 results confirmed however theoretical uncertainties too large to draw any final conclusions.
- Suppression in agreement with predictions of KKMR but there suppression should depend on x_{γ} it was not confirmed in any analysis (H1,ZEUS).
- Do we overestimate the role of LO picture?

15