

Structure Functions and PDF determination at HERA

- Introduction
- HERA structure function data
- PDF determination at HERA
- HERAFitter project
- Summary

Introduction

HERA is worlds only *e*[±]*p* collider

 \rightarrow provides unique opportunity to study the structure of the proton

• e[±](27.5 GeV), p(460-920 GeV)
 √s = 225-318 GeV

1994-2000: HERA I data 2003-2007: HERA II data

- Two collider experiments: H1 and ZEUS
- $\sim 0.5 \text{ fb}^{-1}$ of luminosity recorded by each experiment
- R. Plačakytė, Moriond QCD, 9-16 March

HERA covers x range of the LHC evolution in Q² via DGLAP

ep Scattering at HERA

DIS cross sections provide an access to parton distribution functions in proton:

$$\frac{d^{2}\sigma_{NC}^{e^{\pm}p}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \left[Y_{+}\tilde{F}_{2}^{\pm} \mp Y_{-}x\tilde{F}_{3}^{\pm} - y^{2}\tilde{F}_{L}^{\pm} \right]$$

dominant contribution
important at high Q²
$$Y_{\pm} = 1 \pm (1-y)^{2}$$

sizable at high y
PDFs
LO: $F_{2} \approx x \sum e^{2}_{q}(q+\bar{q})$ (in NLO (α_{s} g) appears)
 $xF_{3} \approx x \sum 2e_{q}a_{q}(q-\bar{q})$

In LO e⁺/e⁻ charged current cross sections are sensitive to different quark densities:

$$e^{+}: \quad \tilde{\sigma}_{CC}^{e^{+}p} = x[\overline{u} + \overline{c}] + (1 - y)^{2}x[d + s]$$
$$e^{-}: \quad \tilde{\sigma}_{CC}^{e^{-}p} = x[u + c] + (1 - y)^{2}x[\overline{d} + \overline{s}]$$

HERA Structure Function Data arXiv:1208:6138 EPJC 62 (2009) 625 Inclusive HERA I and II data JHEP 1209:061 (2012 EPJC 70 (2010) 945 with typical precision: EPJC 61 (2009) 223 NC: ~1.5% CC: ~4% HERA dơ/dQ² [pb/GeV²] ଚ H1 e p NC H1 e[⁺]p NC ZEUS e p NC HERA II ZEUS e^{*}p NC HERA II neutral (γ/Z) SM e⁻p NC (HERAPDF 1.5) charged (W[±]) SM e^{*}p NC (HERAPDF 1.5) currents cross sections at $Q^2 \geq M^2_{Z/W}$ scale get similar: 10⁻³ H1 e⁻p CC H1 e[⁺]p CC EW unification ZEUS e p CC HERA II ZEUS e[†]p CC HERA II SM e p CC (HERAPDF 1.5) 10⁻⁵ good agreement with SM e⁺p CC (HERAPDF 1.5) SM (HERAPDF 1.5) y < 0.9 $P_e = 0$ 10-7

 10^{3}

Q² [GeV²]

10⁴

Highlights from High Q² NC Measurement 🥮 🚈

First measurement of $F_2^{\gamma Z}$

Improved $xF_{3}^{\gamma Z}$ measurement

arXiv:1208:6138

 \rightarrow provide sensitivity to parton compositions:

 $F_2^{\gamma Z} \sim q + \overline{q}$

 $xF_{3}^{\gamma Z} \sim xq_{val}$

H1PDF2012- fit to final H1 NC, CC data

R. Plačakytė, Moriond QCD, 9-16 March

1 X

Highlights from High Q² CC Measurement

HERA CC e^+/e^- measurements:

- → sensitivity to quark flavour
- \rightarrow improvement in precision: $e^+(e^-)p$ factor of 3(10) luminosity vs HERA I

 $\widetilde{\sigma}_{cc}$

HERAPDF: only HERA *ep* data

- uses consistent data with well understood correlations
- no need for nuclear corrections

provide NLO and NNLO predictions compatible with other PDF groups

DATA	PDF set	
H1-ZEUS CC,NC HERAI	HERAPDF1.0 (NLO,NNLO)	
H1-ZEUS CC,NC HERAI+(prel.)II	HERAPDF1.5 (NLO,NNLO)	recommended
CC,NC HERAI+(prel.)II +jets	HERAPDF1.6	
CC,NC HERAI +charm	HERAPDF1.0+charm	
All data above	HERAPDF1.7	
Ongoing: H1-ZEUS HERAI+II	HERAPDF2.0 (NLO,NNLO)	
		-

Overview of HERAPDFs:

HERAPDF strategy and settings

NLO,NNLO DGLAP evolution (QCDNUM, arXiv:1005.1481) PDFs parametrised (at starting scale Q_0^2) by:

 $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$

A: overall normalisation B: small x behavior C: $x \rightarrow 1$ shape

- apply quark number and momentum sum rules

Fitted PDFs: xg, xu_v, xd_v, $x\overline{U}=x\overline{u}(+x\overline{c})$, $x\overline{D}=x\overline{d}+x\overline{s}(+x\overline{b})$

The optimal number of parameters chosen when no further improvements in the χ^2 are observed

- more flexible paramerisation than in HERAPDF1.0 used in fits with HERA II data $Q_0^2 = 1.9 \text{ GeV}^2$, $\alpha_s = 0.1176$, $Q_{min}^2 = 3.5 \text{ GeV}^2$, different HF schemes (RT in HERAPDF1.0)

Uncertainties separated into:

experimental	small uncertainties ($\Delta \chi^2 = 1$)
model	evaluated from variation of model parameters: Q^2_{min} , f _s , m _c , m _B
parametrisatio	n results from different parametrisation assumptions

Reduced uncertainties in HERAPDF1.5 (mainly valence quarks)

Inclusion of Charm Data

LO charm production at DIS (boson-gluon-fusion):

Direct access to the gluon

Heavy quark (HQ) treatment in PDFs is important

Useful to study the influence of different heavy flavour schemes on the PDFs

R. Plačakytė, Moriond QCD, 9-16 March

Combined HERA charm measurement

→ combination of 9 H1 and ZEUS measurements

H1 and ZEUS

Eur.Phys. J. C73 (2012), 23

Charm Data: Impact on PDFs

Eur.Phys. J. C73 (2012), 231

 \rightarrow uncertainty on g(x), c(x) and light sea reduced \rightarrow impact on Z, W production at LHC (next slide)

QCD Analysis of Charm Data

In VFN schemes the charm quark mass parameter M_c does not correspond directly to a physical mass

 \rightarrow not the case for Fixed-Flavour Number Scheme (FFNS)

H1 and ZEUS _م 700 An NLO QCD analysis in the FFNS Charm + HERA-I inclusive (FFNS of ABM, arXiv:1011.5790) FF (ABM) $m_c(m_z)$ =1.26 \pm 0.05 GeV performed to determine the MS 680 running charm quark mass m (m) 660 $m_c(m_c) = 1.26 \pm 0.05_{\text{exp}} \pm 0.03_{\text{mod}} \pm 0.02_{\text{param}} \pm 0.02_{\alpha_s} \text{ GeV}$ 640 In agreement with the world average of $m_{(m_{1})} = 1.275 \pm 0.025 \text{ GeV}$ 620, m_c(m_) [GeV]

Eur.Phys. J. C73 (2012), 2311

HERAFitter Project

HERAFitter: a set of PDF fitting tools for determination of the parton distribution functions

- \rightarrow open source, everyone is free to download and use it
- → developers: H1 and ZEUS, ATLAS, CMS, LHCb, active support by theory groups

HERAFitter-0.1.0: Sept 2011, HERAFitter-0.2.0: May 2012, HERAFitter-0.3.0: March 2013

		Search	Titles Text	
HEI	RAFitter			
HERAFitt//FitForumM > HERA	AFitt/HERAFitterMe > HERAFitt//Meeting20 > HERAFitt//Meeting20 > HERAFitter			
Wiki WikiPolicy RecentChanges	HERAFitter		우 🏽 🖶 🖬 🖨	
FindPage	Welcome to HERAFitter			
HelpContents HERAFitter	HERAFitter is a set of PDF fitting tools initially developed jointly by the H1 and ZEUS collaborations for determ to LHC experiments and theory groups. Independent developers are also encouraged to add their contribution	ination of the parton density funct ו to the package. The HERAFitter נ	tions and currently extended codes were used to obtain the	
Page	HERAPDF sets.			
Edit (Text)	Downloads of HERAFItter software package			
Edit (GUI) Info	🔻 New HERAFitter release is available! The HERAFitter releases can be accessed HERE upon registration. Everyone is free to register.			
Subscribe	Registration			
Add Link Attachments	To register, please log in (upper right corner) by creating an account (firstnamelastname, example: JohnSmith) and send your request and login name to Areafitter- help@desy.de.			
More Actions:	HERAFitter Meetings			
	 User's Meetings: monthly meetings to enhance communication between users and developers (open access) Developer's Meeting: technical weekly meetings to ensure communication among developers (restricted access) Steering Group's Meeting (restricted access) 			
Developers Info (restricted to developers)				
	Internal Developments Organisation			
	Conveners: Voica Radescu, Ringaile Placakyte, Amanda Cooper-Sarkar Release coordinator: Sasha Glazov Contact Persons: Klaus Rabbertz (CMS), Bogdan Malaescu (ATLAS), Olaf Behnke (ZEUS), Cristi Diaconu (H1), Ronan <u>McNulty</u> (LHCb) Steering Group: Voica Radescu, Ringaile Placakyte, Sasha Glazov, Amanda Cooper-Sarkar, Gavin Salam (theory), Klaus Rabbertz (CMS). Bogdan Malaescu (ATL		S), Boadan Malaescu (ATLAS),	
 Stearing aroup: of a robust robust in Statistic Passing Cables (America Cooper Statistic, Gavin Statistic (Hebly), Radis R Librarians: authors/developers of individual modules Getting help: Send email to Parafitter-help@desy.de 		www.h	erafitter.	

HERAFitter: Structure

Modular structure of HERAfitter:

Global benchmarking platform for PDFs and QCD

HERAFitter: Usage examples

The differential W[±], Z cross section data of ATLAS (2010, 35/pb) were jointly analysed with $e^{\pm}p$ cross sections from HERA

 \rightarrow ratio of W/Z cross sections together with y_{τ} shape provide a constraint on s-quark density

 $r_s = 0.5(s + \bar{s})/d$

- in ratio with inclusive jet cross sections at 7 TeV

systematic uncertainties

are significantly reduced

 \rightarrow precise NLO QCD test

10

10⁻²

(b) xS

10-1

 \rightarrow Similar analyses are being performed at CMS

10

104

(a) xg

10-1

Summary

HERA provides unique determinations of the proton structure and compatible NLO and NNLO predictions with other PDF groups

- → published final HERA II CC,NC data
- \rightarrow H1-ZEUS combination and HERAPDF2.0 determination ongoing

 \rightarrow HERA jet and charm data provide additional constrains on gluon density and α_s , charm data help to reduce uncertainties of W,Z predictions at LHC

HERAFitter is open source QCD fit framework supported by many theory and experimental (H1, ZEUS, ATLAS, CMS, LHCb) groups

- → has the potential to increase the scientific output of the LHC data and to provide a flexible environment for theory benchmarking
- \rightarrow well integrated in the LHC analyses

HERAFitter mail-support:herafitter-help@desy.dewww.herafitter.orgMonthly users' meetings:https://www.herafitter.org/HERAFitter

Back-up slides

HERA Structure Function Data

HERA I inclusive data → combination of H1 and ZEUS sets

HEP 1001:109 (2010)

- HERA II inclusive data
- \rightarrow combination of preliminary H1 and ZEUS sets
- \rightarrow new published data

- full HERA II NC and CC data JHEP 1209:061 (2012)
- increase of integrated luminosity by factor of 3(10) for e+(e-)p sets
- significantly improved systematic uncertainties
- integrated luminosity determined with elastic QED Compton events

Eur.Phys. J. C72 (2012), 2163

- last e+p NC period EPJC 12 08 066

 \rightarrow currently in process of combination (H1 and ZEUS, HERA I and II)

HERA Structure Function Data

Latest H1 and ZEUS publications:

Inclusive deep inelastic scattering at high Q2 with longitudinal polarised lepton beams at HERA JHEP **1209**, 2012, 061, [arXiv:1206.7007]

Determination of the integrated luminosity at HERA using elastic QED Compton events, Eur. Phys. J. C72 (2012) 2163, [arXiv:1205.2448]

Combination and QCD Analysis of Charm Production Cross Section Measurements in Deep-Inelastic ep Scattering at HERA, DESY-12-172, Eur. Phys. J. C (2013) 73: 2311, [arXiv:1211.1182].

Measurement of high-Q2 neutral current deep inelastic e+p scattering cross sections with a longitudinally polarised positron beam at HERA, EPJC-12-08-066, [arXiv:1208.6138]

High Q² NC Cross Sections

Combination of high Q² data HERA-I and HERA-II

Measuring the difference in NC polarised cross sections $F_{2}^{\gamma Z}$ can be accessed:

$$\frac{\sigma^{\pm}(P_L^{\pm}) - \sigma^{\pm}(P_R^{\pm})}{P_L^{\pm} - P_R^{\pm}} = \frac{\kappa Q^2}{Q^2 + M_Z^2} \left[\mp a_e F_2^{\gamma Z} + \frac{Y_-}{Y_+} v_e x F_3^{\gamma Z} - \frac{Y_-}{Y_+} \frac{\kappa Q^2}{Q^2 + M_Z^2} (v_e^2 + a_e^2) x F_3^Z \right]$$

Final measurement of polarisation dependence of CC cross sections from H1 and ZEUS

H1PDF2012

QCD analysis of final H1 NC, CC data using HERAFitter

→ improvement in precision for all PDFs in full x range in particular for down-type quarks xD

LO jet production in DIS:

Direct sensitivity to gluon and strong coupling constant

Reduce correlation of gluon and $\alpha_{\!_{\varsigma}}$ in PDF fit

QCD fits with jet data

- allow to constrain simultaneously $\alpha_{_{\!\!\!\!\!\!\!\!\!}}$ and gluon

HERAPDF1.6:

CC, NC HERA I+(prel.)II + 4 inclusive jet measurements from H1 and ZEUS

Inclusion of Jet Data: HERAPDF1.6

HERAPDF1.0

HERAPDF1.0: QCD fit to combined H1 and ZEUS HERA I CC,NC data

- ultimate precision (experiments cross calibrate each other)

arXiv:0911.0884[hep-ex] https://www.desy.de/h1zeus/combined_results/index.php gluon – from F₂ scaling violation, F₁, quarks - from CC (flavour separation), NC

Inclusion of All Data: HERAPDF1.7

What if fit all HERA data?

- inclusive + jets + charm + low energy data → **HERAPDF1.7**
- → important consistency check
- flexible parametrisation (as in HERAPDF1.5f)
- heavy flavour treatment as in HERAPDF1.0
 - → motivates for RT optimised at $m_c^{model}(opt)$
- strong coupling constant = 0.119 (as supported by the jet data)

Deep Inelastic Scattering (DIS)

Structure function factorisation:

each structure function can be written as a convolution of a hard-scattering coefficient C and non-perturbative parton distributions:

$$F_2^V(x,Q^2) = \sum_{i=q,\bar{q},g} \int_x^1 dz \times C_2^{V,i}(\frac{x}{z},Q^2,\mu_F,\mu_R,\alpha_S) \times f_i(z,\mu_F,\mu_R)$$

determined using measured cross section

calculable in perturbative QCD

PDFs

PDF scale dependence is calculable in perturbative QCD (DGLAP evolution):

$$\frac{\partial q(x,Q^2)}{\partial lnQ^2} \propto \int_x^1 \frac{dz}{z} \left[q(z,Q^2) P_{qq}\left(\frac{x}{z}\right) + g(z,Q^2) P_{qg}\left(\frac{x}{z}\right) \right]$$
$$\frac{\partial g(x,Q^2)}{\partial lnQ^2} \propto \int_x^1 \frac{dz}{z} \left[q(z,Q^2) P_{gq}\left(\frac{x}{z}\right) + g(z,Q^2) P_{gg}\left(\frac{x}{z}\right) \right]$$

Probability via splitting functions:

R. Plačakytė, Moriond QCD, 9-16 March

PDF Determination

Experimentally measured $\sigma(x,Q^2) \rightarrow F_2(x,Q^2)$

 Q^2 dependence of F_2 is given in pQCD (DGLAP evolution equations)

x-dependence of PDFs is not calculable in pQCD

- parametrise PDFs at the starting scale Q_{a}^{2}
- evolve PDFs using DGLAP equations to $Q^2 > Q_a^2$
- construct structure functions from PDFs and coefficient functions: predictions for every data point in (x, Q^2) plane
- $\chi^2\mbox{-fit}$ to the experimental data

HERAPDF strategy and settings

DGLAP at NLO \rightarrow QCD predictions

PDFs parametrised (at starting scale Q_0^2) using standard parametrisation form:

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}}, \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

- A: overall normalisation
- B: small x behavior
- **C**: $x \rightarrow 1$ shape

The optimal number of parameters chosen by saturation of the χ^2

- central fit with:

10 free parameters for HERA I data 13 for HERA I+II data

xg, xu_v, xd_v, xŪ, xD where xU=xu and xD=xd+xs at the starting scale (xs=f_sxD with f_s=0.31)

 A_g, A_{uv}, A_{dv} are fixed by sum rules extra constrains for small x behavior of d- and u-type quarks: $B_{uv}=B_{dv}, B_{\overline{U}}=B_{\overline{D}}, A_{\overline{U}}=A_{\overline{D}}(1-f_s)$ for $\overline{u}=\overline{d}$ as $x \rightarrow 0$

DIS:

ep (HERA) data: quarks and gluon at small x (F_L), jets (moderate x), CC - flavour separation, heavy quark structure functions

fixed target data: higher x

neutrino DIS: flavour decomposition, x>0.01

Drell-Yan:

quark-antiquark annihilation – high x sea quarks, deuterium target – \bar{u}/\bar{d} asymmetry

High Pt jets at colliders:

high x gluon

W/Z production: different quark contributions

MSTW

- includes all type of data (not yet most recent HERA data). LO, NLO and NNLO

CTEQ

 includes all type of data (CT10 includes recent combined HERA data and more Tevatron data). NLO

NNPDFs

includes all type of data (except HERA jets). NLO, recently also LO and NNLO

HERAPDF

- HERA (combined) data. NLO and NNLO

AB(K)M

- DIS and fixed target DY data. NLO and NNLO

GJR

- DIS, fixed target DY data and Tevatron jet data. NLO and NNLO (no jets)

Main sources of difference between different PDFs:

- inclusion of different data
- methods of determining 'best fit'
- uncertainty treatment/sources
- assumptions in procedure (parametrisation)
- heavy flavour treatment
- PDF and $\alpha_{_{\!\!\!\!\!\!c}}$ correlation

... lead to differences in the cross section predictions

PDF Fit Groups: Benchmarking (PDF4LHC)

Different PDF lead to differences in cross section predictions

G.Watt arXiv:1106.5788v1

PDF Fit Groups: Benchmarking (PDF4LHC)

G.Watt

R. Plačakytė, Moriond QCD, 9-16 March

HERAPDF1.5f

HERAPDF1.5f - more flexible parametrisation \rightarrow gluon more flexible and low-x d-valence is freed from u-valence

H1 and ZEUS HERA I+II 14 parameter PDF Fit H1 and ZEUS HERA I+II 10 parameter PDF Fit xf xf March 2011 March 201 $O^2 = 10 \text{ GeV}^2$ $Q^2 = 10 \text{ GeV}^2$ HERAPDF1.5f (prel.) HERAPDF1.5 (prel.) 0.8 0.8 exp. uncert. exp. uncert. model uncert. **HERAPDF** Structure Function Working Group **HERAPDF Structure Function Working Group** model uncert. parametrization uncert. xu_v xu, parametrization uncert. 0.6 0.6 HERAPDF1.5 (prel.) 0.4 0.4 xg (× 0.05) xg (× 0.05) xd, xd_v 0.2 0.2 xS (× 0.05) xS (× 0.05) 0 10⁻¹ 10-2 10⁻¹ 10-3 10-3 10-2 10-4 10-4 1 1 х х

HERAPDF1.5

HERAPDF1.5f

Small difference in total uncertainty
→ swap between parametrisation and experimental uncertainties

Proton-Proton Collisions

Same PDFs can be used to predict pp collisions

 $\hat{\sigma}$ – perturbative QCD cross section

Factorisation:

 $\sigma \approx \hat{\sigma} \otimes \mathsf{PDF}$

HERAPDF Predictions for Tevatron

Predictions based on HERA PDFs describe Tevatron data well

HERAPDF Predictions for Asymmetries at LHC

W lepton asymmetry is sensitive to differences between u and d:

Latest results from ATLAS and CMS

Example: Predictions for Jets at LHC

CMS-PAS-QCD-11-004

Experimental uncertainties are comparable to theoretical ones → using data in QCD fits can improve PDF uncertainties (correlations needed!)

R. Plačakytė, Moriond QCD, 9-16 March

Proton-Proton Collisions: W/Z production

R. Plačakytė, Moriond QCD, 9-16 March

Impact on the LHC predictions

- variation of m_c^{model} changes predictions of Z/W cross sections at LHC by ~3%

> A.M.Cooper-Sarkar, PDF4LHC, March 2010

- sensitivity to charm of the LHC cross section predictions comes from flavour sensitivity of the inclusive DIS data

$$xU = xu + xc$$
 $x\overline{U} = x\overline{u} + x\overline{c}$ $xD = xd + xs$ $x\overline{D} = x\overline{d} + x\overline{s}$

- where U is fixed by $F_2^{}$ data larger $m_c^{model} \rightarrow less c$ in sea \rightarrow more $u \ (= d)$
- important at low Q^2 and low \boldsymbol{x}
- R. Plačakytė, Moriond QCD, 9-16 March

Heavy Quark treatment in QCD analysis

Factorisation:

$$F_{2}^{V,h}(x,Q^{2}) = \sum_{i \neq f, f,g} \int_{x}^{1} dz \cdot C_{2}^{V,i}\left(\frac{x}{z},\frac{Q^{2}}{\mu^{2}},\frac{\mu_{F}^{2}}{\mu^{2}}\alpha_{S}(\mu^{2})\right) f_{i/h}(z,\mu_{F},\mu^{2})$$

i - number of active flavours in the proton $m_c=1.5$, $m_b=4.7$ GeV

QCD analysis of the proton structure: treatment of HQ essential

Different prescriptions how to treat heavy quarks in PDF fits (HQ schemes):

Fixed Flavour Number Scheme (FFNS) *i-fixed* c(b) quarks massive, only light flavours in the proton i=3(4)

General-Mass Variable Flavour Number Scheme (GM-VFNS) *i-variable* matched scheme, different implementation used by fit groups $\rightarrow m_c^{model}$

Zero-Mass Variable Flavour Number Scheme (ZMVFNS) all flavours massless (breaks at $Q^2 \sim m_{HO}^2$)

- different implementations of general mass variable flavour number scheme for heavy flavour treatment used in this study:

```
RT standardused by MSTW08RT optimised [arXiv:1006.5925]used by CTEQ4,5,6HQACOT-fullused by CTEQ6.5,6.6,CT10S-ACOT-χused by NNPDF2.0
```

- the optimal value of parameter m_c^{model} is determined for each of these schemes (m_c^{model} (opt)), which gives the best description of the HERA data
- PDFs are used in MCFM to calculate Z/W $^{\scriptscriptstyle\pm}$ cross-section predictions