

VELUT

EVO

ARBOR

- jet cross sections
- vector mesons

on behalf of the H1 and ZEUS Collaborations

13.3.2013 Rencontres de Moriond QCD

Diffractive kinematics

Collins factorisation, proven: $d \sigma^{ep \to eXp}(\beta, Q^2, x_{IP}, t) = \sum_i f_i^D(\beta, Q^2, x_{IP}, t) \cdot d \sigma^{ei}(\beta, Q^2)$ **Proton Vertex Factorisation**, consistent with data: $f_i^D(\beta, Q^2, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot f_i(\beta, Q^2)$

 $f_{i}(\beta, Q^{-}, x_{IP}, t) = f_{IP/P}(x_{IP}, t); f_{i}(\beta, Q^{-})$

Experimental Methods

- LRG method:
 - no activity in forward part
 - + high statistics
 - proton dissociative background

- Proton Tagging:
 - detection of the outgoing proton in forward proton spectrometers (PS)
 – FPS (H1), VFPS (H1), LPS (ZEUS)
 - + direct extraction of diffractive variables, t
 dependence
 - + free of p-diss background
 - small acceptance -> low stats

Diffractive Cross Section

$$\frac{d^4 \sigma}{d\beta \, dQ^2 \, dx_{IP} \, dt} = \frac{4 \pi \, \alpha^2}{\beta \, Q^4} (1 - y + \frac{y^2}{2}) \, \sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t)$$

where $\sigma_r^{D(4)}$ is diffractive reduced cross section:

$$\sigma_r^{D(4)} = F_2^{D(4)} - \frac{y^2}{2(1 - y + y^2/2)} F_L^{D(4)}$$

longitudinal diffractive structure function

 $\sigma_r^{D(3)}(\beta, Q^2, x_{IP})$ is integrated over t to allow PS and LRG comparison

Reduced Cross Section

Different measurements cover large region of phase space in x_{IP} , b and Q^2 Excellent agreement between different reconstruction methods in overlap regions

Leading protons at H1 and ZEUS

FPS vs VFPS, HERA 2 (157 pb⁻¹) agreement within errors in whole kinematical region

 $x_{lp}\sigma_r^{D(3)}$

H1 – ZEUS agreement within errors 15 % difference in overall normalization compatible with norm. uncertainties (8% FPS, 10% LPS)

allows combination of datasets

- due to different t-slope measurements used in extrapolation to |t| < 1 GeV², the combination was performed only in the t-range directly measurable by both proton spectrometers:
- Q²: 2.5 200 GeV², |t|: 0.09-0.55, β: 0.0018-0.816, x_{IP}: 0.00035 0.09

 $X^2/ndf = 52/58$

H1 – ZEUS PS Combination HERA H1 and ZEUS 0.09<|t|<0.55 GeV² H1 and ZEUS σ, D(3) β=0.0018 x_{IP}= β= **0.0056** β**= 0.018** β= **0.056** β= 0.18 β**= 0.56** H1 FPS HERA II Λ H1 FPS HERA I HERA 0.025 ...İ ZEUS LPS 1 0.09<|t|<0.55 GeV² 0.0009 **ZEUS LPS 2** ٥ х (E) D D d X 0.225 0.225 0.0025 0.025 x_{IP}=0.05 0.0085 β**=0.018 (x 6)** 0.025 0.175 0 0.016 0.025 0.15 0 0.025 0.125 0.025 ±•• 0 0.1 0.035 β**=0.056 (x 3)** 0.025 0.075 0 0.05 0.025 0.05 β**=0.18** 0.075 0.025 0.025 Ţ∎Ţ 0 10² 0 0.09 10 0.025 Q^2 (GeV²) 10² 10² 10² 10² 10 10² 10 $10 \ 10^2$ 10 10 10 Q^2 (GeV²)

- due to different t-slope measurements used in extrapolation to |t| < 1 GeV², the combination was performed only in the t-range directly measurable by both proton spectrometers:
- Q²: 2.5 200 GeV², |t|: 0.09-0.55, β: 0.0018-0.816, x_{IP}: 0.00035 0.09
- significant improvement in precision in combined results

$$\sigma_r^{D(3)} = F_2^{D(3)} - \frac{y^2}{Y_1} F_L^{D(3)}$$

sensitive to gluons, FL^D ~ xg(x)
independent test of QCD factorization
different beam energies necessary

- very good agreement between reconstruction methods
 - phase space extension by factor of 3 in x_{IP} wrt LRG
 - same fraction of proton dissociation as for incl. diff.

Beyond DGLAP...

- DGLAP: strong p_T and x ordering
- BFKL: no p_T ordering, strong x ordering, hard parton at the beginning of the ladder may be emitted
- in diffractive case, no proton remnant in the forward region
- 1 central + 1 forward jet selection:
 - p_T > 3.5 GeV, m_{jj} > 12 GeV
 - $-1.0 < \eta_c < 2.5, 1 < \eta_f < 2.8, \eta_c < \eta_f$

no significant deviations from DGLAP are observed

- measurement of VM production cross section to test the transition between soft and hard physics
- $d\sigma/d|t| \sim exp(-bt)$
 - b~10 GeV⁻² for soft physics
 - b~4-5 GeV⁻² pQCD

b slope decreases with scale as expected by smooth transition from soft to hard physics

- measure simultaneously elastic and proton dissociative production of J/Ψ in photoproduction
- measuring ee and µµ decay channels

summary

- Inclusive cross section measurements presented
- first diffractive proton spectrometer cross section
 H1-ZEUS combination presented
- non zero FL^D measured
- proton dissociation in jet systems is consistent with inclusive measurement
- no physics beyond DGLAP observed
- latest VM measurements ilustrating smooth transition between soft and hard physics were presented