

Analysis details

Results

Summary O

Measurement of Charged Particle Spectra in Deep-Inelastic *ep* scattering at HERA

Anastasia Grebenyuk

on behalf of the H1 collaboration

Antwerp, Belgium December 4, 2013

Introduction	Analysis details	Results	Summary			
•••	0	000000	0			
Charged particle spectra in DIS						

Measurement of hadron production in DIS constrain

Low p_T region:

- hadronisation effects are expected to play a role
- small sensitivity to different parton dynamic models

Large p_T region:

• disfavoured by the strong p_T ordering \rightarrow difference between different parton dynamics

Introduction	Analysis det ○	ails Results	Summar O				
Models for ep scattering							
MC programs	ME	Parton cascade	Hadronisation				
RAPGAP	LO	DGLAP					
Cascade	LO(off-shell)	CCFM	Lundstring				
Djangoh	LO	CDM = non-DGLAP Random walk in transverse momentum					
Herwig++	LO(Powheg)	DGLAP	cluster				

Fragmentation parameters are tuned

to e^+e^- data (ALEPH tune)

The observables for physics beyond DGLAP at HERA:

- Transverse energy flow
- Forward jets
- Charged particle spectra

Kinematic range: $ep \rightarrow e'X$

- $E_e = 26.7 \text{ GeV}; E_p = 920 \text{ GeV}, \sqrt{s} = 319 \text{ GeV}$
- $5 < Q^2 < 100 \text{ GeV}^2$ $10^{-4} < x_{bj} < 10^{-2}$ 0.05 < y < 0.6
- charged particles: -2 < η < 2.5 and *p*_T > 0.15 GeV in lab-frame

Measurement is performed in hadronic center-of-mass frame ($\gamma^* p$ rest frame)

- p_T^* and η^*
- $\eta^* < 0$: target (p-remnant) hemisphere
- $\eta^* > 0$: γ hemisphere
 - central: $0 < \eta^* < 1.5$
 - current: 1.5 < η* < 5

Analysis details

Results

Summary

η^* distribution for $ho_{ au}^* <$ 1 GeV; PDF and hardonisation uncertainties

Soft p_T^*

- \sim flat plateau
- small dependence on parton densities
- large hadronisation uncertainty

All parton shower models, except CASCADE, describe data within the PDF and hadronisation uncertainty

Analysis details

Results 000000 Summary

η^* distribution for $p_{\tau}^* > 1$ GeV; PDF and hardonisation uncertainties

Large p_T^*

- slightly larger dependence on parton densities
- small hadronisation uncertainty

Strong sensitivity to different parton

6

• Models with collinear parton shower fail to describe the measurement

$\begin{array}{c|c|c|c|c|c|c|} \hline Introduction & Analysis details & Results & Summary \\ \circ & \circ & \circ & \circ & \circ \\ \hline \eta^* \mbox{ distribution in bins of } (x,Q^2) \mbox{ for } p^*_T < 1 \mbox{ GeV} \end{array}$

Soft p_T^*

DJANGOH (CDM) RAPGAP (DGLAP) Herwig++ (DGLAP) CASCADE (CCFM)

Plateau size shrinks with increasing Q^2

All parton shower models, except CASCADE, describe data in all (x, Q^2) regions

Analysis details

Results

η^* distribution in bins of (x, Q^2) for $p_T^* > 1$ GeV

Large p_T^*

DJANGOH (CDM) RAPGAP (DGLAP) Herwig++ (DGLAP) CASCADE (CCFM)

Models with collinear parton shower are below the data at small η^* and small Q^2 , while become better at large Q^2

CASCADE(CCFM) is good at small η^* and small Q^2

Color Dipole Model is reasonable over full range

Color Dipole Model describes the data for whole p^{*}₇ spectra

• Models with collinear parton shower are below the data for $p_T^* > 1$ GeV (especially in the central region) $\frac{9}{12}$

Analysis details

Results

Summary

p_T^* distribution in bins of (x, Q^2) ; 0 < η^* < 1.5

DJANGOH (CDM) RAPGAP (DGLAP) Herwig++ (DGLAP) CASCADE (CCFM)

Models with collinear parton shower are substantially below the data at lowest *x* and Q^2 region for high p_T^*

Analysis details

Results

Summary

p_T^* distribution in bins of (x, Q^2) ; 1.5 < η^* < 5

DJANGOH (CDM) RAPGAP (DGLAP) Herwig++ (DGLAP) CASCADE (CCFM)

Better description of the data by the models compared to the central region

Introduction	Analysis details o	Results	Summary •
Summary			

- Transverse momenta and rapidity spectra were measured with H1 detector at HERA
- Low p_T^* region ($p_T^* < 1$ GeV):
 - Sensitivity to the fragmentation parameters
 - All parton shower models, except CCFM PS model, provide reasonable description of the data
- Hard p_T^* region (1 < p_T^* < 10 GeV):
 - Sensitivity to the different parton dynamic models
 - Collinear parton shower models fail to describe the data
 - Color Dipole Model is better than other models in describing both p_T^* and η^* measured spectra especially at low x