Proton Structure Functions and

Tests of QCD at HERA

Beijing, 4.9.2013 I.Abt, MPI München

Content

- Protonic Facts and Elastic Scattering
- Cross Sections and Structure Functions
 - Measurements
 - Parton Distribution Functions
- QCD
 - Jets and alpha_s
- Proton Structure ?
 - Photon Structure ?
- Proton Size and Shape
- Summary & Outlook

HERA I+II inclusive jets charm PDE Fit

 $\Omega^2 = 10 \text{ GeV}^2$

¥

0.4

xg (· 0.05)

Before I start

Multiple Apologies

I have no real

explanation for

any of this!

I really know very little about the proton:

- mass = 1GeV = 1.67 10⁻²⁷ kg
- 3 valence quarks
- charge = +1
- spin = 1/2
- radius \approx 1 fm; shape?
- lifetime » age of the universe
- afflicted by QCD

And I am sorry, if I should disturb you doing your Email or reading your favorite newspaper.

DISCLAIMER

- I will not try to be complete on any subject.
- I have selected what I saw fit
- to make my point.

Any opinion is mine and only mine and is in no way supported by either ZEUS or H1 or probably anybody else.

Nevertheless I am proud to represent H1 and ZEUS.

Deep Inelastic Scattering

Deep Inelastic Scattering

This can rebuild itself

Beijing, 4.9.2013

The Microscope

That is what we measure!

Beijing, 4.9.2013

Kinematics

Factorisation

Decompose cross section:

Structure Functions

 $e^{\pm}p$ $\sigma_{r,\mathrm{NC}}^{\pm} = \frac{\mathrm{d}^2 \sigma_{\mathrm{NC}}^{e^+ p}}{\mathrm{d} r \mathrm{d} O^2} \cdot \frac{Q^4 x}{2\pi \alpha^2 Y_{\mathrm{c}}} = \tilde{F}_2 \mp \frac{Y_-}{Y_-} x \tilde{F}_3 - \frac{y^2}{Y_-} \tilde{F}_L$ tree level Z, y $Y_{\pm} = 1 \pm (1 - y)^2$ q NC $\tilde{F}_2 = F_2 - \kappa_Z v_e \cdot F_2^{\gamma Z} + \kappa_Z^2 (v_e^2 + a_e^2) \cdot F_2^Z$ $\tilde{F}_L = F_L - \kappa_Z v_e \cdot F_T^{\gamma Z} + \kappa_Z^2 (v_e^2 + a_e^2) \cdot F_T^Z$ vector a_e axial-vector eZ weak couplings $x\tilde{F}_3 = \kappa_Z a_e \cdot xF_3^{\gamma Z} - \kappa_Z^2 \cdot 2v_e a_e \cdot xF_3^Z$ $\kappa_{z}(Q^{2}) = Q^{2} / [(Q^{2} + M_{z}^{2})(4\sin^{2}\theta_{W}\cos^{2}\theta_{W})]$ (2)**OPM** $\tilde{F}_L = 0$ $(F_2, F_2^{\gamma Z}, F_2^Z) = [(e_u^2, 2e_uv_u, v_u^2 + a_u^2)(xU + x\overline{U}) + (e_d^2, 2e_dv_d, v_d^2 + a_d^2)(xD + x\overline{D})]$ $(xF_{3}^{\gamma Z}, xF_{3}^{Z}) = 2[(e_{u}a_{u}, v_{u}a_{u})(xU - xU) + (e_{d}a_{d}, v_{d}a_{d})(xD - xD)]$ xU = xu + xc $x\overline{U} = x\overline{u} + x\overline{c}$ xD = xd + xs $x\overline{D} = x\overline{d} + x\overline{s}$ sea quarks = anti-quarks $xu_n = xU - xU$ $xd_n = xD - xD$ valence quark distributions

Structure Functions

NC and CC yield valence and sea quark distribution. QCD analysis [DGLAP] yields gluon distribution.

Advent of Precision

H1 and ZEUS 2010: 1.6 $\sigma_{r,NC}^+(x,Q^2)$ x=0.002 HERA I NC e⁺p H1 and ZEUS x=0.0002 ZEUS **publish combined H1** \bigcirc 1.2 results on data taken x=0.008 1993 to 2000. 0.8 **10 years of fighting** x=0.032 0.6 to understand x=0.08 0.4 detectors, methods x=0.25 and systematics. 0.2 104 10² 10^{3}

The power of combination.

10

 Q^2 / GeV^2

Reduced Cross Section

HERAPDF1.0

The proton pdfs reveal the valence quarks plus glue and sea evolving with Q². Inclusive DIS data alone can do this.

The PDF Community

Beijing, 4.9.2013

High Statistics Data

High Statistics Data

H1 Collaboration HERA I + II

Each experiment now has the precision of the HERA I combination.

Combining them is exciting!

difference between positron and electron data

DESY 12-107

Beijing, 4.9.2013

High Statistics Data

Valence Revealed

NC positron and electron data

$$x\tilde{F}_3 = \frac{Y_+}{2Y_-} \left(\sigma_{r,\text{NC}}^- - \sigma_{r,\text{NC}}^+ \right)$$

19

Electroweak Effects

The Charmed Sea

ZEUS **DESY-10-129** CC positron data $\sigma_{r,\rm CC}^+ = x\overline{U} + (1-y)^2 xD$ xD = xd + xs $x\overline{U} = x\overline{u} + (x\overline{c})$ a hint of charm Sand

Charm Structure Function

Charm Structure Function

HERAPDF1.5 NLO prediction RT standard Mc =1.4 GeV

Uncertainty dominated by uncertainty on Mc.

HERAPDF with CHARM

The charm data are sensitive to glue and sea and to the charm mass....

Iris Abt, MPI München

Charm Mass

Iris Abt, MPI München

Scan for the charm mass The charm mass is a very splendid thing, it is a parameter that depends on the framework you are working in. All part of the QCD fit.

Jets are also QCD objects

ZEUS: inclusive in photoproduction

a hint of non perturbativeness

Beijing, 4.9.2013

Iris Abt, MPI München

Jets and α_s

Jets and α_s

H1: inclusive, dijet and trijet in DIS

Simultanious fit to all normalised cross sections. α_s(M_Z) = 0.1163 ± 0:0011 (exp.)

± 0.0008 (had)

 $^{+\,0.0044}_{-\,0.0035}$ (th.) $\pm\,0.0014$ (PDF)

H1-prel-12-031

Jets and α_s

Fit from Q² > 150 GeV² [arXiv:0904.3870]

𝕂 s = 0.1168 ± 0.0007 (exp.)

+0.0046 -0.0030 (th.) ± 0.0016 (PDF)

α_s is measured at HERA and elsewhere

Everybody agrees within uncertainties.

Beijing, 4.9.2013

Iris Abt, MPI München

HERAPDFs with JETS

Jets reduce the uncertainty on the glue.

HERAPDFs with JETS and CHARM

HERAPDF 1.7 is a member based on inclusive, low Ep, jets and charm data.

steeper low-x gluon than ever before:

HERAPDF is a large family!

H1prel-11-143 ZEUS-prel-11-010

HERAPDF Family

	NAME	NC and CC DIS	NC, lower E(p_beam)	Jets	Charm	Docu	Grids	Data comparison	Date
version 🔸	HERAPDF1.7 NLO	<u>HERAI</u> + partial HERAII	H1+ZEUS	H1 an ZEUS(1)	d H1+ZEUS	Figures	N.A.		June 2011
	HERAPDF1.6 NLO	<u>HERAL</u> + partial HERAII		H1 an ZEUS(1)	d	Writeup and figures	N.A.		March 2011
	HERAPDF 1.5 NNLO	<u>HERAL</u> + partial HERAII				Figures	LHAPDF beta 5.8.6		March 2011
	HERAPDF 1.5 NLO	<u>HERAI</u> + partial HERAII				Figures	LHAPDF beta 5.8.6		July 2010
	Charm mass scan	HERAI			H1+ZEUS	Writeup and figures			August 2010
	HERAPDF1.0 NNLO	<u>HERAI</u>				ICHEP2010 <u>writeup</u> and <u>figures</u>	Docu for LHAPDF		April 2010
		HERAI	H1+ZEUS			Writeup and figures	N.A.		April 2010
		HERAI			H1+ZEUS	DIS2010 writeup and figures	N.A.		April 2010
	HERAPDF1.0 NLO PUBLISHED	HERAI				Paper HERAPDF1.0 page	LHAPDE	Benchmarking HERAPDF1.0	Nov. 2009

https://www.desy.de/h1zeus/combined_results/herapdftable/

HERAPDF 2.0 is being worked on, stay tuned.

HERAPDF Family

HERAPDF 1.5 NLO and 1.5 NNLO are the family members recommended for general use. Who needs PDFs anyhow?

Beijing, 4.9.2013

Castle Castle Interactions

Beautiful Destruction

\Rightarrow no reliable searches

Beijing, 4.9.2013

Iris Abt, MPI München

Cross-Section Predictions

With the proper treatment of the parameter charm mass, different schemes give the same predictions for the cross sections, even if different charm masses are used.

$\sigma_r(x,Q^2) = F_2(x,Q^2) - rac{y^2}{1+(1-y)^2}F_L(x,Q^2)$

FL is a high y phenomenon:

Need cross section for varying y at fixed x and Q²

Longitudinal Structure Function

$$Q^2 = xys \implies$$
 need to change s

$$E_p = 920 \text{ GeV}$$
 $E_p = 575 \text{ GeV}$ $E_p = 460 \text{ GeV}$

Low Q^2 and high $y \Rightarrow$ low energy of scattered electron

This is a challenge!

Direct access to glue!

Longitudinal Structure Function

Longitudinal Structure Function

down to $\mathbf{x} \approx \mathbf{0.00003}$ and wide range of Q² **Fixed Target** could only access high x region, where FL is small.

Direct measurement does not contradict PDFpredictions.But there is something else.

Iris Abt, MPI München

Low x Partons in the Proton ?

Heisenberg is strictly against it !

That x is a fraction of the proton momentum is only an interpretation.

Color Dipole Model

Coherence length: I [fm] \approx 0.1/x

The fluctuation might forget where it came from. Do I get the same PDFs for neutrino - nucleon or nucleon nucleon scattering? Is factorisation holding?

Longitudinal Structure Function

Deeply Virtual Compton Scattering

Deeply Virtual Compton Scattering

Generalised parton distribution functions are used for two gluons.

Interpretation in longitudinal momentum space

and transverse position space d\u03d5/dt ~ exp(-b|t|) b = 5.45 ± 0.19 ± 0.34 /GeV² DESY07-142 average impact parameter 0.65 ± 0.02 fm x=0.0012 transverse expansion of partons -- in the proton?

t-Slopes for Vector Meson Production

ZEUS

Should be analysed with respect to proton size.

Proton Size and Dynamics

rms charge radius electron: 0.8786 ± 0.0069 fm 0.84184 + 0.00067 fm muon: rms glue/sea radius **DVCS:** 0.65 ± 0.02 fm What a misleading picture.... 2/3dipole moment: < 0.54 10⁻²³ ecm -1/3 Can we measure a dynamic system while averaging over time. Heisenberg again....

Proton Shape

magnetic moment

 $\mu_{\text{p}}/\mu_{\text{N}} = 2.792847356 \pm 0.00000023$

 $p \rightarrow \Delta$ excitations

[also used for GZK cutoff]

Summary

The proton still holds a lot of secrets. Proton PDFs are getting measured with high precision, HERA was a success.

This allows for effective predictions and thus searches.

The interpretation of proton PDFs is not trivial.

There is more to the proton than PDFs.

There are many questions about size, shape and the spatial distribution of quarks and glue.

There is more than pertubative QCD, even in the proton.

Outlook

The combination of H1 and ZEUS data is ongoing. HERAPDF 2.0 is the next step. The high precision data also test pQCD.

Eventually theory will improve and we will better understand non

perturbative QCD.

We open the door and look inside.

