Inclusive charm production in DIS at HERA

QCD@LHC, DESY, Hamburg, Germany 02.09.2013

Ganna Dolinska

DESY On behalf of the **H1** and **ZEUS** Collaborations

Overview

- Theory introduction
- HERA combination results:
 - Combined data
 - Test of different GM VFNS
 - Optimizing c mass
 - W and Z production @ LHC predictions
 - PDFs
 - Test of FFNS
- Recent results

Charm production at HERA

Heavy flavour production in DIS @ HERA up to ~30% charm ~ 3% beauty of total DIS cross section

> Dominant process of charm production @ HERA – **Boson-Gluon Fusion** (*BGF*)

> > sensitive to gluon density in proton

Heavy quark schemes

• Fixed Flavour Number Scheme

- Charm is massive, produced only in hard scattering process
- $Q^2 \sim m_c^2$

- Zero Mass Variable Flavour number scheme
 - Charm is massless parton in proton
 - $Q^2 >> m_c^2$

General Mass Variable Number Scheme

Combination of FFNS & ZM VFNS with some interpolation "in between"

HERA combined results

HERA combined results

HERA combined results

Charm mass fit

Z and W predictions for LHC

DESY-12-172

PDFs from HERA \rightarrow Z & W production cross sections for LHC at 7 TeV

Spread between different theories much smaller, if we use optimized M

Impact of charm data on PDF

Inclusion of charm data to the fit decreased the error on sea flavour components

Comparisson to FFNS

Running charm mass

Fit used inclusive DIS data and combined charm

 $m_c(m_c) = 1.26 \pm 0.05_{\text{exp}} \pm 0.03_{\text{mod}} \pm 0.02_{\text{param}} \pm 0.02_{\alpha_s} \text{ GeV} \rightarrow \text{fit result}$ $m_c(m_c) = 1.275 \pm 0.025 \text{ GeV} \rightarrow \text{world average}$

Charm with D+ mesons

DESY-13-028

Charm with D* mesons

DESY-13-054

Charm with D* mesons

DESY-13-054

Charm with D* mesons

CC

х

 All results are in a good agreement

DESY-13-054

D* measurement sometimes shows similar precision to the combination

Previous HERA data combined

Charm inclusive measurement

Lifetime tagging

Conclusions

- HERA DIS charm data was combined → precise data for testing heavy quark terms in pQCD
- Theoretical description is nice:
 - → Different NLO QCD with GM VFNS provide somewhat different results → compensated by optimizing charm mass
 - Addition of charm data improved knowledge of sea flavour decomposition
 - Precise prediction of W and Z production
- FFNS:
 - Describes data in the whole kinematic range
- New results for D* and D+ measurements, not included to combination:
 - → Precise
 - Possibility of further improvement of HERA charm combination

 $rac{d^2 \sigma^{ep}}{dQ^2 dx} \propto F_2(x,Q^2)$

 $rac{d^2 \sigma^{ep
ightarrow c ar c x}}{dQ^2 dx} \propto rac{F_2^{c ar c}(x,Q^2)}{F_2^{c ar c}(x,Q^2)}$

CC

2

Different theory calculations

Theory	Scheme	Ref.	$F_{2(L)}$	m_c	Massive	Massless	$\alpha_s(m_Z)$	Scale	Included
			def.	[GeV]	$(Q^2 \lesssim m_c^2)$	$(Q^2 \gg m_c^2)$	$(n_f = 5)$		charm data
MSTW08 NLO	RT standard	[28]	$F^c_{2(L)}$	1.4 (pole)	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s)$	0.12108	Q	[1, 4-6, 8, 9, 11]
MSTW08 NNLO			10.05		approx $\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^2)$	0.11707		
MSTW08 NLO (opt.)	RT optimised	[31]			$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s)$	0.12108		
MSTW08 NNLO (opt.)					approx $\mathcal{O}(\alpha_s^3)$	$\mathcal{O}(\alpha_s^2)$	0.11707		
HERAPDF1.5 NLO	RT standard	[55]	$F^c_{2(L)}$	1.4 (pole)	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s)$	0.1176	Q	HERA inclusive DIS only
NNPDF2.1 FONLL A	FONLL A	[30]	n.a.	$\sqrt{2}$	$\mathcal{O}(\alpha_s)$	$\mathcal{O}(\alpha_s)$	0.119	Q	[4-6, 12, 13, 15, 18]
NNPDF2.1 FONLL B	FONLL B		$F^c_{2(L)}$	$\sqrt{2}$ (pole)	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s)$			
NNPDF2.1 FONLL C	FONLL C		$F^c_{2(L)}$	$\sqrt{2}$ (pole)	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^2)$			
CT10 NLO	S-ACOT- χ	[22]	n.a.	1.3	$\mathcal{O}(\alpha_s)$	$\mathcal{O}(\alpha_s)$	0.118	$\sqrt{Q^2 + m_c^2}$	[4-6, 8, 9]
CT10 NNLO (prel.)		[56]	$F_{2(L)}^{c\bar{c}}$	1.3 (pole)	$\mathcal{O}(\alpha_s^2)$	$\mathcal{O}(\alpha_s^2)$	6 D		
ABKM09 NLO	FFNS	[57]	$F_{2(L)}^{c\bar{c}}$	1.18 (MS)	$\mathcal{O}(\alpha_s^2)$	5	0.1135	$\sqrt{Q^2 + 4m_c^2}$	for mass optimisation only
ABKM09 NNLO	s				approx $\mathcal{O}(\alpha_s^3)$	-			

Tagging methods

