Particle production at HERA

Mykhailo Lisovyi DESY

on behalf of the H1 and ZEUS Collaborations

DIS at HERA

 $\stackrel{e^{+}}{\xrightarrow{k}} \stackrel{\overrightarrow{k}'}{\xrightarrow{k'}} \stackrel{e^{+}}{\xrightarrow{\gamma, Z^{0} \geq Q^{2}}} \stackrel{q}{\xrightarrow{q}} \stackrel{q}{\xrightarrow{p}} \stackrel{q}{\xrightarrow{\chi_{p}}} \stackrel{q}{\xrightarrow{\chi_{p}}}$

Photon virtuality:

р

$$Q^{2} = -q^{2} = -(k - k')^{2}$$

Bjorken x: $x = \frac{Q^{2}}{2q \cdot p}$

Inelasticity: $y = \frac{q \cdot p}{k \cdot p}$

Deep Inelastic Scattering (DIS): Q² > 1 GeV²

Particle production

Fixed-order QCD calculations

Particle production

Overview

Parton dynamics

Charged particle spectra in DIS

Hadronisation

- $K^{o}_{\ s}$ / Λ^{o} scaled momentum spectra in DIS
- $K^0_{\ s}$ production at high Q^2

Hadrons

• Excited charm mesons

Parton dynamics

Motivation:

- Test of low-x dynamics (various PS approaches are based on different approximations in the low-x region).
- Test of different models of parton emissions in PS (DGLAP, BFKL, CCFM)

Observables:

Particle densities (eventnormalised charged particle distributions): $\frac{1}{N} \frac{dn}{dp_T^*}$ $\frac{1}{N} \frac{dn}{d\eta^*}$ $5 < Q^2 < 100 \text{ GeV}^2$, $10^{-4} < x < 10^{-2}$, $p_T^* < 10 \text{ GeV}$, $0 < \eta^* < 4$, $p_T^{\text{lab}} > 150 \text{ MeV}$, $-2 < \eta^{\text{lab}} < 2.5$ 5/02/2013 Excited

Low p_{T}^{*} :

Sensitivity to hadronisation process.

High p₇*:

Sensitivity to modelling of parton dynamics

η^{*} distributions

p_{\uparrow} distributions for $0 < \eta^* < 1.5$

BFKL-like model describes the data for in the whole measured region.

DGLAP approach fails at low Q^2 and low x.

CCFM model describes only the high- p_{τ}^* data.

Hadronisation Fragmentation function

Strange scaled momentum spectra in DIS

Motivation:

- FFs for strange hadrons are poorly constrained => potential constraints from new data.
- Strange-hadron production in ep allows to constrain quark, antiquark and gluon contributions to the FFs.

Observables:

Scaled momentum (estimator for z, the parton momentum fraction carried by the hadron: $x_p = \frac{p^{Breit}}{\sqrt{Q^2/2}}$

 $10 < Q^2 < 40000 \text{ GeV}^2$, $10^{-3} < x < 0.75$

Breit frame (p^{Breit}, n^{Breit}): the current region

EPJ C 72 (2012) 1869

5/02/2013

Excited QCD 2013, Sarajevo

x_p distribution: K⁰s

- Clear indication of scaling violations in FF: larger $Q^2 \rightarrow$ more soft gluons emitted \rightarrow more particles at low x_p . Analogy: scaling violations in inclusive DIS.
- Both NLO QCD+FF predictions fail to describe the data. DSS calculations do a bit better at medium x_p and low Q², while AKK at high Q².
- MCs provide reasonable description.

EPJ C 72 (2012) 1869

13

• Similar conclusions for Λ .

Strange x distribution: comparison to inclusive data

- Inclusive scaled momentum spectra for charged particles in DIS (JHEP 6 (2010) 1). Most charged particles are pions.
- Inclusive charged-particle and neutral-strange-hadron data show a plateau for $Q^2 > 100 \text{ GeV}^2$.
- At low Q^2 mass effects are expected (most pronounced at low

K^{0}_{c} production at high Q^{2}

Motivation:

- Test various fragmentation models.
- Test universality of the strangenesssuppression factor ($\lambda_s = P(s)/P(q)$) in the Lund string fragmentation model

Observables: Scaled momentum: x_{μ} Q^2 , p_T

$$p = \frac{p^{Breit}}{\sqrt{Q^2}/2},$$

 $145 < Q^2 < 20000 GeV^2$, 0.2 < y < 0.6 $p^{T}(K^{0}) > 0.3 \text{ GeV}, |n(K^{0})| < 1.5$

dơ/dx_p^{CBF} [pb]

MC/Data

Ratio of K⁰_s cross section to DIS

plateau as a function of Q^2 .

 Strong dependence of the ratio in p_T is expected due to mass effects

Spectroscopy of excited charm mesons

Excited QCD 2013, Sarajevo

$D_{1^{\pm,0}}(2420)$ and $D_{2^{\pm,0}}(2460)$

ZEUS

0.145

0.15

0.155

 D_1^0

M(Kππ,)-M(Kπ)(GeV)

ZEUS (373pb

 $N(D^{*+}) = 64088 \pm 43$

ZEUS

 $N(D^0) = 145740 \pm 29$

ടനീ≥

1.95

M(Kπ) (GeV)

1.9

ZEUS

1.85

Gauss^{mod}+bg background

D±

 $N(D^+) = 39283 \pm 452$

M(Kππ)(GeV)

ZEUS

per

35000

2000

15000

10000

1.8

 D_2

1.85

Motivation:

- Measurement of parameters of charged and neutral excited D mesons with L=1.
- Measurement of fragmentation fractions into these states.
- Very limited experimental data so far.

$D_{10}(2420)$ and $D_{20}(2460)$

	HERAII	HERAI	PDG	ZEUS
$M(D_1^0), \mathrm{MeV}$	$2423.1 \pm 1.5^{+0.4}_{-1.0}$	$2420.5 \pm 2.1 \pm 0.9$	2421.3 ± 0.6	$\begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0.4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ $
$\Gamma(D_1^0), \mathrm{MeV}$	$38.8 \pm 5.0^{+1.9}_{-5.4}$	$53.2 \pm 7.2^{+3.3}_{-4.9}$	27.1 ± 2.7	0.2 CLEO
$h(D_1^0)$	$7.8_{-2.7-1.8}^{+6.7+4.6}$	$5.9^{+3.0+2.4}_{-1.7-1.0}$		-0.2 -0.4
$M(D_2^{*0}), {\rm MeV}$	$2462.5 \pm 2.4^{+1.3}_{-1.1}$	$2469.1 \pm 3.7^{+1.2}_{-1.3}$	2462.6 ± 0.7	-0.6
$\Gamma(D_2^{*0}), \mathrm{MeV}$	$46.6 \pm 8.1^{+5.9}_{-3.8}$	43 fixed	49.0 ± 1.4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Spectroscopy: measured masses and widths are in good agreement with PDG. Improved precision compared to previous ZEUS measurement.
- D⁰ helicity: good agreement with previous BABAR and CLEO measurements. Agrees with an S- and D-wave mixture as well as a pure D-wave hypothesis.
- Fragmentation fractions, BR ratios and fractions of ground states originating from the excited states were measured.

NPB 866 (2013) 229

	HERAII	PDG
$M(D_1^+), \mathrm{MeV}$	$2421.9 \pm 4.7^{+3.4}_{-1.2}$	2423.4 ± 3.1
$M(D_2^{*+}), \mathrm{MeV}$	$2460.6 \pm 4.4^{+3.6}_{-0.8}$	2464.4 ± 1.9

Measured for the first time:

$$f(c \to D_2^{*+}) = 3.2 \pm 0.8(\text{stat.})^{+0.5}_{-0.2}(\text{syst.}) \%$$

$$f(c \to D_1^+) = 4.6 \pm 1.8(\text{stat.})^{+2.0}_{-0.3}(\text{syst.}) \%$$

- So far, very limited data on $D_1^{\pm}(2420)$.
- Spectroscopy: masses are in good agreement with PDG. Improved precision compared to previous ZEUS measurement.
- Fragmentation fractions, BR ratios and fractions of ground states originating from the excited states were measured. Good agreement with the neutral states

Excited QCD 2013, Sarajevo

NPB 866 (2013) 229

Various aspects of particle production were studied in ep collisions at HERA:

- Particle dynamics was studied with transverse momentum spectra of charged hadrons. The BFKL-like model (DJANGOH) performs the best at low x.
- Hadronisation was studied with scaled momentum spectra for charged hadrons and neutral strange hadrons.
 - Scaling violations were observed.
 - NLO QCD calculations with recent fits of FFs are not able to describe the HERA data. Therefore, the data have potential to further constrain fragmentation functions.
 - \sim The strange-hadron data can constrain λ_s .
- $D_1^{\pm,0}$ (2420) and $D_2^{\pm,0}$ (2460) were studied. All parameters agree with previous measurements. Fragmentation fractions for charged states were measured for the first time.

5/02/2013

Scaled momentum spectra in DIS

Motivation:

- Scaling violations in FF.
- Test hypothesis of limiting fragmentation (density of charged particles per η unit depends only on the energy of the γp system, W).
- Test fragmentation universality.

Observables:

Scaled momentum (estimator for z, the parton momentum fraction carried by the hadron): $x_p = \frac{p^{Breit}}{\sqrt{Q^2}/2}$

 $10 < Q^2 < 41000 \ GeV^2$, $2^{*10^{-3}} < x < 0.75$ 5/02/2013 Excited QCD 2013, Sarajevo

Scaling violations in FF

ZEUS

None of NLO QCD calculations + FF extracted from e⁺e⁻ describes the data ZEUS

Clear indication of scaling violations: larger $Q^2 \rightarrow$ more soft gluons emitted \rightarrow more particles at low x_{p} . Analogy: scaling violations in inclusive DIS.

Quark-fragmentation universality

ZEUS

- Limiting fragmentation checked (no Q2 and W depenedence)
- Good agreement between ep data (from ZEUS and H1) and e+e- data. => fragmentation universality supported by the new data.

x distribution: K⁰

ZEUS

Excited QCD 2013, Sarajevo

28

EPJ C 72 (2012) 1869

$D_1^{\pm,0}(2420)$ and $D_2^{\star\pm,0}(2460)$

Neutral states

	HERA II	HERA I	PDG
$N(D_1^0 \to D^{*+}\pi)$	2732 ± 285	3110 ± 340	
$N(D_2^{*0} \to D^{*+}\pi)$	1798 ± 293	870 ± 170	
$N(D_2^{*0} \to D^+\pi)$	$521 \pm 88 \ (S(D^+) > 3)$	690 ± 160	
$M(D_1^0), \mathrm{MeV}$	$2423.1 \pm 1.5^{+0.4}_{-1.0}$	$2420.5 \pm 2.1 \pm 0.9$	2421.3 ± 0.6
$\Gamma(D_1^0), \mathrm{MeV}$	$38.8 \pm 5.0^{+1.9}_{-5.4}$	$53.2 \pm 7.2^{+3.3}_{-4.9}$	27.1 ± 2.7
$h(D_1^0)$	$7.8^{+6.7+4.6}_{-2.7-1.8}$	$5.9^{+3.0+2.4}_{-1.7-1.0}$	
$M(D_2^{*0}), \mathrm{MeV}$	$2462.5 \pm 2.4^{+1.3}_{-1.1}$	$2469.1 \pm 3.7^{+1.2}_{-1.3}$	2462.6 ± 0.7
$\Gamma(D_2^{*0}), \mathrm{MeV}$	$46.6 \pm 8.1^{+5.9}_{-3.8}$	43 fixed	49.0 ± 1.4
$h(D_2^{*0})$	-1 fixed	-1 fixed	
$D_1(2430)^0/D_1^0$	1.0 fixed	1.0 fixed	
$D_0^*(2400)^0/D_2^{*0}$	1.1 ± 1.1	1.7 fixed	
Feed-downs/ D_2^{*0}	0.3 ± 0.4		

Charged states

	HERA II	PDG
$N(D_1^+ \to D^{*0}\pi^+)$	759 ± 183	
$N(D_2^{*+} \to D^{*0}\pi^+)$	634 ± 223	
$N(D_2^{*+} \to D^0 \pi^+)$	737 ± 164	
$M(D_1^+), \mathrm{MeV}$	$2421.9 \pm 4.7^{+3.4}_{-1.2}$	2423.4 ± 3.1
$\Gamma(D_1^+), \mathrm{MeV}$	25 fixed	25 ± 6
$h(D_1^+)$	3.0 fixed	
$M(D_2^{*+}), \mathrm{MeV}$	$2460.6 \pm 4.4^{+3.6}_{-0.8}$	2464.4 ± 1.9
$\Gamma(D_2^{*+}), \mathrm{MeV}$	37 fixed	37 ± 6
$h(D_2^{*+})$	-1.0 fixed	

- Spectroscopy: good agreement with PDG. Improved precision compared to previous ZEUS measurement.
- D₁^o helicity: good agreement with previous BABAR and CLEO measurements. Agrees with an S- and D-wave mixture as well as a pure D-wave hypothesis.
- Fragmentation fractions, BR ratios and fractions of ground states originating from the excited states were measured.

Measured for the first time:

$$f(c \to D_2^{*+}) = 3.2 \pm 0.8 (\text{stat.})^{+0.5}_{-0.2} (\text{syst.}) \%$$

 $f(c \rightarrow D_1^+) = 4.6 \pm 1.8 (\text{stat.})^{+2.0}_{-0.3} (\text{syst.}) \%$

29

NPB 866 (2013) 229