

Measurement of beauty and charm production in deep inelastic scattering at HERA and measurement of the beauty-quark mass

To be submitted to JHEP (results are final)

Outline

- Heavy flavour physics at HERA
- Experimental procedure
- Results

Vladyslav Libov (DESY) on behalf of the **ZEUS collaboration**

XXII. International Workshop on Deep-Inelastic Scattering and Related Subjects Warsaw, 28 April - 2 May 2014

ZEUS experiment at HERA

- Protons 920 GeV
- Electrons 27.6 GeV
- Operational: 1992-2000 (HERA I)

2003-2007 (HERA II)

 $\sqrt{s} = 318 \text{ GeV}$

- **ZEUS** general purpose hermetic detector
- Accumulated 0.5 fb⁻¹ of data
- This measurement: HERA II (354 pb⁻¹)

Heavy flavour physics at HERA

• Beauty and charm quarks are produced in the LO via Boson-Gluon Fusion:

Mass treatment in QCD

• Multi-hard-scale problem ($m_{hc}^{}$, $p_{\tau}^{}$, Q^2) \rightarrow several calculation schemes exist

Massive scheme (FFNS)

Rigorous, fully massive treatment

- Expected to be valid at scales ~ m_{b c}
- Programs exist to calculate fully differential cross sections (HVQDIS, FMNR)

Mixed schemes (GM-VFNS)

- Employ both FFNS and ZM-VFNS
- Interpolation is ambiguous \rightarrow various approaches (RT, ACOT etc.) exist

Massless scheme (ZM-VFNS)

Neglects heavy quark masses

- Allows resummation of terms proportional to $\log(Q^2/m_{bc}^2)$
- Expected to be valid at scales >>m

Heavy flavour measurements can help to test and improve the schemes

Secondary vertex method

Tag: jet + secondary vertex

- Employs long lifetime of ground state hadrons containing charm or beauty quarks
- No specific decay mode requirement
 → increase in statistics
- Select tracks belonging to a jet
 - > p_T(track)>500 MeV
- Fit a secondary vertex
- Project decay length onto a jet axis
- Calculate decay length significance

Phase space of the measurement:

 $5 < Q^2 < 1000 \text{ GeV}^2$ 0.02 < y < 0.7 $E_T^{\text{jet}} > 5(4.2) \text{ GeV}$ $-1.6 < n^{\text{jet}} < 2.2$

Secondary vertex method (cont'd)

• Decay length significance:

ZEUS

- Charm & Beauty MC: RAPGAP
- Light Flavour (LF) MC: ARIADNE

- Charm and beauty asymmetric due to long lifetime
- Get rid of symmetric part by "mirroring"

Secondary vertex method (cont'd)

- Discriminating variables:
 - \rightarrow mirrored significance

 \rightarrow mass

- Three bins are fitted simultaneously
- Total light flavour normalization is fixed by unmirrored significance

Control distributions (charm)

- Charm enrichment:
 S⁺-S⁻>4
 1 < m_{vtx} < 2 GeV
- High purity charm sample!

Good description of the data by the Monte Carlo

Control distributions (beauty)

- **ZEUS Beauty** enrichment: $2 < m_{vtx} < 6 \text{ GeV}, |S| > 8$ 10^{3} 500 Entries Entries S⁺-S⁻>8 ZEUS 354 pb⁻¹ Monte Carlo 400 Charm 10² Beauty $2 < m_{vtx} < 6 \text{ GeV}$ 300 200 10 High purity 100 beauty sample! 10 15 20 25 35 -1.5 -1 -0.5 5 30 40 0 5 2 2.5 0 1. η^{jet} E^{jet}_T (GeV) Entries Entries 150 300 100 200 50 100 0 2 2.5 3 $\log_{10}(Q^2/GeV^2)$ -3.5 -3 -2.5 -2 -1.5 1.5 -4 0.5 -4.5 -1 1 log₁₀x
 - Good description of the data by the Monte Carlo

Systematic uncertainties

	Source	Beauty	Charm
		(%)	(%)
δ_1	Event and DIS selection	± 1.4	± 0.8
δ_2	Trigger efficiency	+2.0	+1.0
δ_3	Tracking efficiency	± 2.0	± 0.5
δ_4	Decay-length smearing	± 1.3	± 1.2
δ_5	Signal extraction procedure	± 0.8	± 0.8
δ_6	Jet energy scale	± 0.7	± 0.9
δ_7	EM energy scale	± 0.3	± 0.1
δ_8	Charm Q^2 reweighting $(\delta_8^{Q^2,c})$	± 1.7	± 1.8
	Beauty Q^2 reweighting $(\delta_8^{Q^2,b})$	± 2.9	± 0.4
	Charm η^{jet} reweighting $(\delta_8^{\eta^{\text{jet}},c})$	$^{+0.3}_{-0.4}$	$^{+1.5}_{-1.0}$
	Beauty η^{jet} reweighting $(\delta_8^{\eta^{\text{jet}},b})$	$^{+0.7}_{-0.4}$	$^{+0.0}_{-0.1}$
	Charm E_T^{jet} reweighting $(\delta_8^{E_T^{\text{jet}},c})$	$^{+1.7}_{-1.3}$	$^{+2.2}_{-1.7}$
	Beauty E_T^{jet} reweighting $(\delta_8^{E_T^{\text{jet}},b})$	$^{+5.4}_{-4.2}$	$^{+0.5}_{-0.6}$
δ_9	Light-flavour asymmetry	± 0.4	± 2.0
δ_{10}	Charm fragmentation function	-0.9	+1.0
δ_{11}	Beauty fragmentation function	-3.1	+0.0
δ_{12}	BR and fragmentation fractions	$+1.8 \\ -2.1$	$+3.5 \\ -2.6$
δ_{13}	Luminosity measurement	± 1.9	± 1.9
	Total	$+8.0 \\ -7.6$	$^{+6.0}_{-5.1}$

- Control of systemtatics at a few-percent level
- Among the dominant uncertainties:

→ charm: branching ratios and fragmentation fractions knowledge

 \rightarrow beauty: MC model

dependence

Theory predictions

- HVQDIS program, NLO QCD massive scheme
- ZEUS-S and ABKM NLO PDFs
- $\mu_R = \mu_F = \sqrt{Q^2 + 4m_q^2}$
- Quark pole masses: $m_c = 1.5 \text{ GeV}$, $m_b = 4.75 \text{ GeV}$ (ABKM PDFs: 4.5 GeV)
- Hadronization corrections obtained with RAPGAP MC
- Uncertainties:
 - $-\mu_{R}$ and μ_{F} varied independently by 0.5 and 2
 - Charm predictions: m varied from 1.3 GeV to 1.7 GeV
 - Beauty predictions: m_{h} varied from 4.5 to 5.0 GeV
 - PDFs varied within uncertainties

Differential cross sections

- Definition: jet cross section in beauty(charm) events
- Corrected to QED Born level using RAPGAP MC

Reasonable description by FFNS NLO QCD

Differential cross sections

Reasonable description by FFNS NLO QCD

Differential cross sections

Reasonable description by FFNS NLO QCD

Inclusive production

 Charm/beauty contribution to the proton structure function F₂:

$$\frac{d^2 \sigma^{ep \to q \bar{q}x}}{dQ^2 dx} \propto F_2^{q \bar{q}}(x, Q^2)$$

15

$$\frac{d^2 \sigma^{ep \to q \bar{q} x}}{dQ^2 dx} = \frac{2 \pi \alpha^2}{x Q^4} [(1 + (1 - y)^2) \cdot F_2^{q \bar{q}}(x, Q^2) - y^2 F_L^{q \bar{q}}]$$

Reduced charm cross sections:

$$\sigma_r^{q\bar{q}} = \frac{xQ^4}{2\pi\alpha^2(1+(1-y)^2)} \frac{d^2\sigma^{ep\to q\bar{q}x}}{dQ^2dx} = F_2^{q\bar{q}}(x,Q^2) - \frac{y^2}{1+(1-y)^2}F_L^{q\bar{q}}$$

• NLO QCD* used to extrapolate from *visible* double-differential crosssections to *full phase space*:

$$F_{2,meas}^{q\bar{q}}(x_i, Q_i^2) = \frac{\sigma_{meas,i}}{\sigma_{HVQDIS,i}} F_{2,HVQDIS}^{q\bar{q}}(x_i, Q_i^2)$$

* PDF and parameter choices are consistent with Eur. Phys. J. C73 (2013) 2311

ZEUS

CC

- Good agreement with NLO QCD predictions
- Large extrapolation uncertainties at low Q² due to jet E₁ cut

ZEUS

 $C\overline{C}$

- Swum in x,Q² using NLO QCD to match the previous measurements
- Consistent with HERA combined results, and with the new measurements not yet included in the combination
- Good precision together with other new results will contribute to the next charm combination round

-bb

 Good agreement with NLO QCD predictions

- Swum in x,Q² using NLO QCD to match previous results
- Consistent with existing measurements
- Agrees to QCD predictions in various schemes
- Most precise measurement in a wide range of Q²

\rightarrow Can we make use of it? 19

Beauty quark mass measurement

• $\sigma_r^{b\bar{b}}$ are sensitive to the beauty quark mass (mostly from low Q²) **ZEUS**

Beauty quark mass measurement

• A PDF fit of $\sigma_r^{b\bar{b}}$ (together with HERA I inclusive DIS) is performed using different values of the beauty quark running mass

Beauty quark mass running

• Let's compare to the measurements at different scales

→ The ZEUS measurement is shown at the scale of $2m_b$ (region of highest sensitivity of the data)

Consistent with running expected from QCD

Summary

- Heavy flavour measurements at HERA provide unique means to test pQCD, validity of gluon PDFs, multiple-scale problem and are sensitive to quark masses
- Beauty and charm production was measured with inclusive secondary vertex method
- Differential cross-sections are reasonably described by NLO QCD (HVQDIS program)
- Charm and beauty contributions to the proton structure function were determined
- Beauty: most precise $F_2^{b\bar{b}}$ measurement!
- Running beauty mass was determined from a QCD fit

Thanks for your attention!