



### All you want to know about proton structure ... but are afraid to ask





DESY





# **Global analysis of parton distributions**

Goal: determination of the *input distributions* (for light quarks and gluons): Method: Parametrizations  $xf(x, Q_0^2) = Nx^a(1-x)^b$  function(x) and usual *statistical estimation* (fits):

$$\chi^{2}(p) = \sum_{i=1}^{N} \left( \frac{\operatorname{data}(i) - \operatorname{theory}(i, p)}{\operatorname{error}(i)} \right)^{2}$$

Position of minimum gives the value and curvature gives the error (region within a certain "tolerance"  $\Delta \chi^2 = 1$ ) (Monte Carlo methods can also be used)

Usually the chi-square definition is more sophisticated, experimental correlations are also treated, etc.



# Data for parton distributions: preLHC





# Now we go from predicting LHC measurements to using them for constraining parton distributions



DESY

# **Current global PDF groups**

ABM: Careful treatment of experimental correlations, nuclear and power corrections in DIS, FFNS NEW! ABM12 arXiv:1310.3059

**MSTW**: negative input gluons at small-*x*, rather "large" Update  $\alpha_s(M_Z^2)$ , GMVNS soon

**NEW! HERAPDF2.0 (prel.) HERAPDF:** Only HERA data, less negative gluons, GMVFS

NNPDF: neural-network parametrization, Monte Carlo approach for error propagation, GMVFNS NEW! NNPDF3.0 see M. Ubiali talk

**CTEQ-TEA**: parametrization with exponentials, substantially inflated uncertainties, GMVFNS Constrains and impact on LHC results

JR [with E. Reya]: detailed study of input scale dependence, dynamical (and "standard") versions, FFNS (there are more groups focused on particular aspects, e.g. CTEQ-JLab)



### https://www.herafitter.org





 $\mathbf{\overline{\mathbf{x}}}$ 

Klimek,

28.04.14, Structure

### Combining various PDF sets - alternative approach: arXiv:1401.0013



CT10 MSTW2008

NPDF2.3

ERAPDF1.5 ABM11

х

10-2

10-1

### **META PDFs**

- •Alternative for PDF4LHC approach
- •META PDFs serve as average of the chosen PDFs for central predictions
- Provide good estimation of total PDF uncertainties



Moriond QCD 2014 **J**. Gao

10-4

 $10^{-3}$ 

1.1

1.0

0.9

0.8

0.7

http://metapdf.hepforge.org



# Inclusive measurements from HERA are core of every parton density extraction





H1 & ZEUS published final F, measurements including low-energy running data •



Consistent within ~ 1 sigma (sizeable point-to-point correlated uncertainties)

~



# All H1 and ZEUS inclusive measurements FINAL —— time to combine them







 $\overline{\mathbf{x}}$ 

# Combined inclusive DIS

 $10^{3}$ 

 $10^{2}$ 

10

**10**<sup>-1</sup>

10

HERA

 $10^{-7}$ 

10-6

Inclusive grid points

**10<sup>-3</sup>** 

**10**<sup>-4</sup>

**10<sup>-2</sup>** 

**10<sup>-1</sup>** 

Х

Fine-x grid points

- <u>H1 and ZEUS published all HERA inclusive DIS measurements 1 fb<sup>-1</sup></u>
- Now we combine these measurements
- 2927 data points combined into 1307  $\frac{10^5}{2}$ 
  - 0.045 < Q<sup>2</sup> < 50000 GeV<sup>2</sup>
  - 6×10<sup>-07</sup> < x < 0.65
- Low energy running data included

Klimek 28.04.14 ഗ functions and parton densities

- HERAverager & HERAFitter used
  - Swimming done using our own full data

## Impressive amount of data points combined



 $\mathbf{\overline{\mathbf{x}}}$ 

For details see O. Turkot talk



Good consistency:  $\chi^2$ /dof = 1685/1620

# 🚝 QCD scaling and EW effects beautifully seen 🍳





This data (exclusively!) used as input to global QCD fit HERAPDF2.0 (prel.)

# NLO & NNLO parton densities NLO NNLO



HERAPDF2.0 (prel.) extracted

with experimental, model and parametrization uncertainties





## 35<sup>th</sup> anniversary of GLUON

• PETRA, 1979



x y z

\*\*\* SUHS (GEV) \*\*\* PTOT 35,768 PTRANS 29.964 PLONG 15,768 CHARGE -2 TOTAL CLUSTER ENERGY 15,169 PHOTON ENERGY 4,893 NR OF PHOTONS 11

18



### Life starts after 35

- Gluon PDF at large  $x \rightarrow$  significant uncertainties for LHC important processes
- Gluons from different PDF groups differ outside PDF uncertainties



- (In)direct constrains
  - scaling violation, collider jet data, prompt photon data, total ttbar cross sections



- H1 performed direct extraction of gluon density from  $F_{\rm L}$  measurement @NLO



Gluon approximated from F<sub>L</sub> agrees with gluon determined from scaling violations



# Gluon meets top quark

- Directly sensitive to large-x gluon PDF
- Recently computed in full NNLO QCD
  - For running and pole top mass



### **g** 00000 JR14: pole mass 173 GeV<sup>2</sup> at $\sqrt{s} = 7$ TeV $\sigma_{t\bar{t}}^{\text{dyn}} = 143.2^{+5.4}_{-5.8} \pm 2.4 \,\text{pb}$ $\sigma_{t\bar{t}}^{\text{std}} = 154.1^{+6.1}_{-6.5} \pm 3.0 \,\text{pb}$ TeVatron $\sigma_{t\bar{t}}^{\text{dyn}} = 7.07^{+0.22}_{-0.19} \pm 0.06 \,\text{pb}$ $\sigma_{t\bar{t}}^{\text{std}} = 7.37^{+0.25}_{-0.21} \pm 0.07 \,\text{pb}$ arXiv:1403.1852v ABM12: top data INCLUDED in fit, m, FITTED Pole mass 171GeV<sup>2</sup> Running mass 162GeV<sup>2</sup> $143.0 \begin{array}{c} +5.6 \\ -8.8 \end{array} \begin{array}{c} +6.5 \\ -6.5 \end{array}$ $150.2 \begin{array}{c} +0.1 \\ -4.6 \end{array} \begin{array}{c} +6.1 \\ -6.1 \end{array}$ $209.1 \begin{array}{c} +7.9 \\ -12.6 \end{array} \begin{array}{c} +8.7 \\ -8.7 \end{array}$ $219.3 \stackrel{+0.1}{_{-6.6}} \stackrel{+8.2}{_{-8.2}}$

00000

00000

21

arXiv:1310.3059

### arXiv:1310.3059

# ABM12 meets top quark



DESY

#### arXiv:1311.5703

## Gluon meets LHC jets

- LHC jet data included directly in the framework of MSTW PDF
  - highest precision inclusive jet cross sections from ATLAS and CMS
- Good agreement between ATLAS and CMS data sets
- Good agreement with reweighting method







# Gluon meets prompt photons



### • Prompt y data help constrain gluon



- At intermediate  $E_{\tau}$  - most precise data - scale uncertainty dominant

NNLO calculations necessary to fully exploit this measurement

 Asses data sensitivity to PDF using HERAFitter platform





More about high-x measurements from HERA – see A. Levy talk More about disentangling quark distributions – see S. Alekhin talk DESY

arXiv:1310.3059

# What DY can teach us?

 ABM12 included LHC Drell-Yan data from ATLAs, CMS and LHCb



h₄

h<sub>B</sub>

- Improved determination of quark distribution at  $x\,\sim\,0.1$ 

• Better constraint on d-quark



27

#### arXiv:1311.5703

## What can jets teach us?



DESY

28



DESY

# Little is known about the strange quark distribution in the proton (1312.6283)

Is light-quark sea symmetric as SU(3) suggests?

Is strangeness suppressed due to s-quarks large masses?

 $\mathbf{\overline{\mathbf{x}}}$ 

DFSY-13-246

# Strange sea @ LO from HERMES

- Direct measurements of strange particles can help constraining sea
  - Strangeness tagging via kaons very promising
- HERMES extracted strange PDF@LO using newest K<sup>+</sup>K<sup>-</sup> multiplicities

xS(x;Q2) shape

- strikingly different from CTEQ6L and other global LO PDFs
- strikingly different from sum of light antiquarks
- absence of strength above  $x \sim 0.1$  discrepant with CTEQ6L



Distribution softer than that determined by other analysis

nsities

### arXiv:1402.6263v1 Prince Charming helps strangers

HERA Fitter

- E For details see G. Aad talk
- PDFs with different strange see assumptions
- Differential W and Z cross sections at LHC
  - constraints on strange sea at  $Q^2 \sim M_{Z/W}^2$
  - ATLAS-epWZ12 PDF based on ATLAS W and Z cross-section + HERAI data
- W + charm measurements





#### arXiv:1312.6283v2

# Prince Charming helps strangers



Good agreement with NOMAD [Nucl.Phys. B876 (2013) 339, ks = 0.59 ± 0.019]





# Yet another one - please meet photon PDF



# Precision of LHC data requires inclusion of higher order electroweak effects

# PDFsetQED



- Two existing photon PDF sets with QED corrections included 0.1
  - MRST2008QED
  - new NNPDF2.3QED arXiv:1308.0598
  - Photon PDF determined by DIS and Drell-Yan LHC data
  - Good agreement with MRST2004QED result for x > 0.3



More about QED effect in PDFs - see C. Schmidt talk

- Another approach to be implemented into HERAFitter and used for QED fits of LHC data: arXiv:1401.1133 (R. Sadykov)
  - QED-modified evolution equations are implemented into  $\beta$  version of  $\not\!\!\!\!/$  release of QCDNUM program
  - APPLGRID interface to SANC MC generator created for fast evaluation of LO photon-induced cross-sections



## Summary

- Our knowledge of parton distributions in proton is growing
- More precise measurements require more precise PDFs
- We entered PDF-LHC era
  - From predicting LHC measurements we use them in PDF determination
- Still long way to full and precise understanding of proton

... still so much to learn

My personal thanks to my PDF teachers (in general and for this talk)

A. Cooper-Sarkar, P. Jimenez-Delgado, R. Placakyte, V. Radescu, S-O. Moch, J. Rojo, P. Nadolsky, R. Thorne



## Additional material

## JR14 dynamical & standard

- New dynamical and standard JR14 PDFs
- Improved calculations
  - nonperturbative higher-twist terms
  - nuclear corrections, target mass corrections
  - running mass in DIS charm & beauty production
  - complete treatment of syst. uncertainties of data including experimental correlations
- More/updated data included
  - HERAI inclusive & charm, H1  $F_L$
  - HERA jets (not for NNLO)



 No Tevatron gauge bosons & LHC data included to get genuine predictions





 $\mathbf{\overline{\mathbf{N}}}$ 

Klimek,

28.04.14

Structure

functions and parton densities

# Comparison with HERAI combination

- Significant reduction of systematic uncertainties
- Significant increase of statistics

### NCe<sup>+</sup>p: 3 times HERAI luminosity



### NCe-p: 10 times HERAI luminosity



## New kinematic ranges explored

- Kinematic range extended for existing data samples
- Low energies added: CME = 225
  GeV and 251 GeV



## HERAPDF2.0 (prel.)

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1 + D_{u_v} x + E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} \left(1 + D_{\bar{U}} x\right), \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

DESY

## HERAPDF2.0 (prel.) @ NLO



Reasonable description of NC, CC and low energy data for NLO and NNLO

DESY



 $\mathbf{\overline{\mathbf{N}}}$ 

# HERAPDF2.0 (prel.) @ NNLO

 High-Q<sup>2</sup> region well described for NCep and CCep and low energy data for NLO and NNLO





 $\overline{\mathbf{x}}$ 

Klimek,

# HERAPDF1.5LO (prel.)

- Parton densities @LO are essential for proper simulation of parton showers and underlying event properties in LO+PS Monte Carlo event generators
- HERAPDF1.5 LO set based on HERAPDF1.5 NLO PDF settings
- Includes experimental uncertainties
- Available in LHAPDF library

For details see M. Cooper-Sarkar talk



## NNPDF3.0



### Slide from J. Rojo

### NNPDF updates

PDF updates Solution Next release will be NNPDF3.0, based on a complete rewriting of the NNPDF framework in C++ (more than 70K lines of code)

#### For details see M. Ubiali talk

More than 1000 new data points from HERA-II and the LHC, including jet cross-sections, W+charm production, top quark data, low and high mass Drell-Yan, W lepton asymmetries.....



Completely redesigned fitting methodology based on closure tests with known underlying physical laws (S. Forte, PDF4LHC, 12/2014)

Substantially improved **Genetic Algorithms** minimization with new Weight Penalty method for fitting (iterative Bayesian regularization)

|                                         | Experiment  | Dataset                                  | DOF  |
|-----------------------------------------|-------------|------------------------------------------|------|
|                                         | NMC         |                                          | 356  |
|                                         |             | NMCPD                                    | 132  |
|                                         |             | NMC                                      | 224  |
|                                         | SLAC        |                                          | 74   |
| .1                                      |             | SLACP                                    | 37   |
| the                                     |             | SLACD                                    | 37   |
|                                         | BCDMS       | 1000000000                               | 581  |
|                                         |             | BCDMSP                                   | 333  |
|                                         |             | BCDMSD                                   | 248  |
|                                         | CHORUS      | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 862  |
|                                         |             | CHORUSNU                                 | 431  |
|                                         | MINUTOWAL   | CHURUSNB                                 | 431  |
|                                         | NTVDMN      | NTINUTAN                                 | 79   |
|                                         |             | NTUNDONN                                 | 41   |
|                                         | UPDAGAU     | NIVIBUMN                                 | 38   |
|                                         | HERAIAV     | UEDAINCED                                | 370  |
|                                         |             | UEDAINCEN                                | 145  |
|                                         |             | HERAICCEP                                | 34   |
|                                         |             | HERAICCEM                                | 34   |
|                                         | ZEUSHERA2   | IIERATOOET                               | 252  |
|                                         | LINDILLINE  | ZOGNC                                    | 90   |
|                                         |             | 206CC                                    | 37   |
|                                         |             | ZEUSHERA2NCP                             | 90   |
|                                         |             | ZEUSHERA2CCP                             | 35   |
|                                         | H1HERA2     |                                          | 511  |
|                                         |             | H1HERA2NCEM                              | 139  |
|                                         |             | H1HERA2NCEP                              | 138  |
| nσ                                      |             | H1HERA2CCEM                              | 29   |
| це                                      |             | H1HERA2CCEP                              | 29   |
| 200                                     |             | H1HERA2LOWQ2                             | 124  |
| 200                                     |             | H1HERA 2HGHY                             | 52   |
|                                         | HERAF2CHARM |                                          | 47   |
|                                         | DYE886      |                                          | 199  |
|                                         |             | DYE886R                                  | 15   |
|                                         |             | DYE886P                                  | 184  |
|                                         | DYE605      |                                          | 119  |
| tting                                   | CDF         |                                          | 105  |
| 0                                       |             | CDFZRAP                                  | 29   |
| ure                                     |             | CDFR2KT                                  | 76   |
|                                         | DO          | DOTRAD                                   | 138  |
| ıg                                      |             | DOZRAP                                   | 28   |
| U C                                     | ATTAC       | DORZCON                                  | 170  |
| LHC,                                    | AILAS       | ATT AGUTD AD2CDD                         | 20   |
|                                         |             | ATLASW2RAF30PD                           | 00   |
|                                         | (           | ATLASBOA JETS2P76TEV                     | 50   |
|                                         | CMS         | ATBACK TOBICZI TOTET                     | 95   |
|                                         | 0115        | CMSWEASY840PB                            | 11   |
|                                         |             | CMSWMASY47FB                             | II   |
|                                         | (           | CMSJETS11                                | 63   |
| pight                                   |             | CMSWCHARMTOT                             | 5    |
|                                         |             | CMSWCHARMRAT                             | 5    |
|                                         |             | CMSDY2D11                                | 132  |
|                                         | LHCB        |                                          | 19   |
| zation)                                 |             | LHCBW36PB                                | 10   |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | (           | LHCBZ940PB                               | 9    |
|                                         | TOP         |                                          | 6    |
| SM-4LUGIA                               | To          | otal (exps)                              | 4214 |
| SMATLHCI4.                              | L           | /                                        |      |



 Strange fragmentation measured before \_\_\_\_\_ extract xS(x) (PR D75,114010 (2007))