Diffraction 2014

Primošten, Croatia 10-16 September 2014

QCD and Hadronic Final States

Jan Olsson, DESY for the H1 and ZEUS Collaborations

Topics: Recent H1 and ZEUS results on the Hadronic Final State at HERA

Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling α_s

DESY 14-089, arXiv:1406.4709

Trijet Production in Deep Inelastic Scattering at HERA

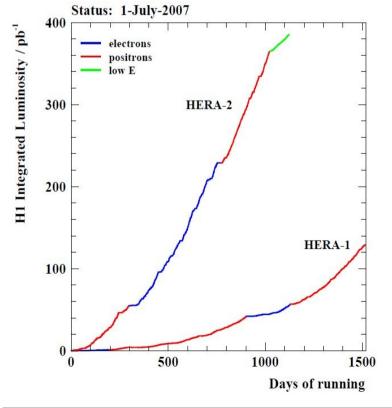
ZEUS-prel-14-008

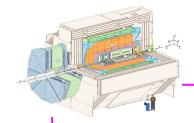
ZEUS results on Photoproduction of Isolated Photons: see following talk by Oleg Kuprash

Search for QCD Instanton-Induced Processes in DIS at HERA

H1-Prelim-14-031

Measurement of Charged Particle Spectra in ep DIS at HERA

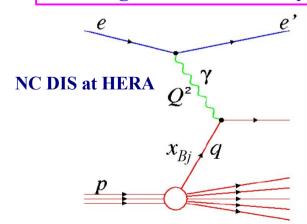

DESY 13-012, arXiv:1302.1321



$E_e = 27~ ext{GeV} \ E_p = 920~ ext{GeV} \ \sqrt{s} = 319~ ext{GeV}$

 $\sim 0.5 \text{ fb}^{-1}/\text{exp.}$

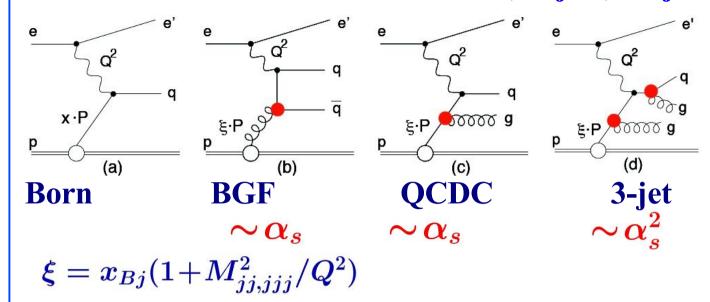
HERA operation 1992-2007

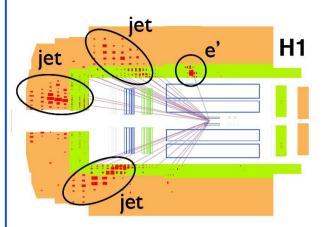


H1 and ZEUS:

High statistics data samples from HERA II, matched by highly improved control of Experimental Uncertainties in Event and Jet Reconstruction

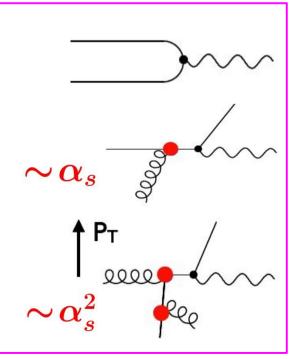
- Hadronic Final State
 - Kinematically overconstrained system in DIS:
 - In situ calibration of HFS Energy Scale
 - Charged tracks, Calorimeter clusters
 - Energy Flow algorithms, avoid Double Counting
 - Separate Jet Energy calibration
- Jet Energy Scale uncertainty ~1%
- Electron Energy Scale uncertainty: ~0.5 1%
- Trigger and Acceptance uncertainties: 1 2%
- Integrated Luminosity uncertainty: 1.8 2.5%


 $egin{aligned} oldsymbol{Q}^2 & ext{Virtuality of exchanged boson} \ oldsymbol{x}_{Bj} & ext{Bjorken scaling variable} \ oldsymbol{y} & ext{Inelasticity } (y\!=\!Q^2/sx_{Bj}) \end{aligned}$


Measurement of Multijet Production in ep Collisions at High Q^2 and Determination of the Strong Coupling α_s

DESY 14-089, arXiv:1406.4709 Subm. to EPJ C

Jet Production in NC Dis: Inclusive, Dijets, Trijets



H1 Multijets

Jet Finding performed in Breit Frame 2xP+q=0

- Only hard sub-processes generate large p_T Sensitivity to α_s and gluon density
- Inclusive k_T algorithm used for jet finding (anti-k_T algorithm similar results)
- Minimum Jet P_T required: $P_T^{jet} > 3$ GeV

NC DIS Data Sample

HERA II data, 351 pb⁻¹

Jet Samples

Inclusive jets:

Each jet

contributes to cross-section

2-jets (3-jets):

All events with at least 2 (3) jets contribute to cross-sections

Trijet sample is a subsample of Dijets

Measurement phase space for jet cross sections

$$150 < Q^2 < 15000 \,\text{GeV}^2$$

 $0.2 < y < 0.7$

$$-1.0 < \eta_{\rm lab}^{\rm jet} < 2.5$$

$$7 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \,\mathrm{GeV}$$

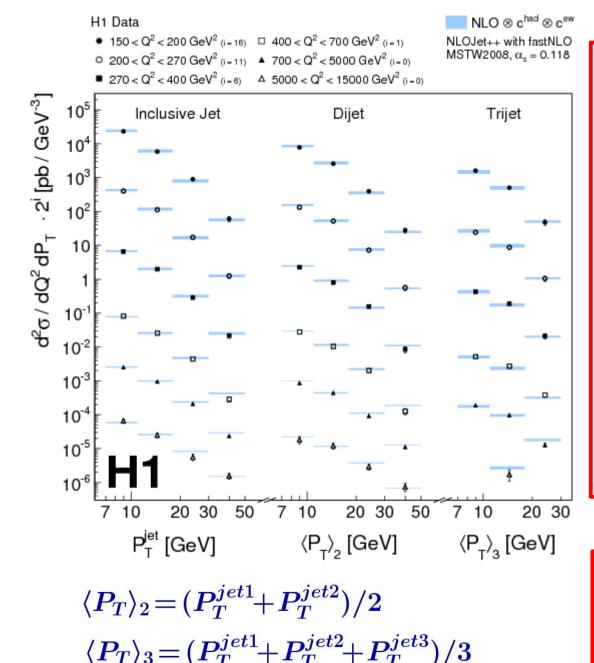
$$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50\,\mathrm{GeV}$$

$$M_{12} > 16 \,\text{GeV}$$

Extended Phase Space:

- Needed to handle migrations at boundaries of the Measurement p.s.
- Improves precision of Jet Measurements

Extended analysis phase space

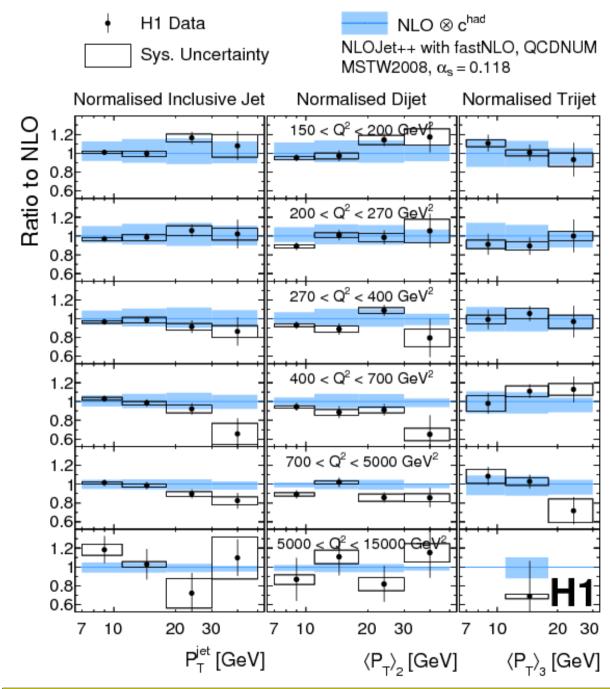

$$100 < Q^2 < 40\,000\,\mathrm{GeV}^2$$
 $0.08 < y < 0.7$
 $-1.5 < \eta_\mathrm{lab}^\mathrm{jet} < 2.75$
 $P_\mathrm{T}^\mathrm{jet} > 3\,\mathrm{GeV}$
 $3 < P_\mathrm{T}^\mathrm{jet} < 50\,\mathrm{GeV}$

Regularised Unfolding*

- Multidimensional Unfolding in Q2, y, P_T
- 4-fold Simultaneous Cross Section measurements of NC DIS, Inclusive Jets, Dijets and Trijets
- Statistical and systematic correlations taken into account
- Extended Phase Space handles migrations at boundaries, improves precision
- Absolute Jet Cross Sections, as well as Jet Cross Sections Normalised to $\sigma_{\rm NCDIS}$
 - Large part of experimental uncertainties cancel
 - Note: PDF uncertainties do not cancel
- Final Differential Cross Sections in 64 bins

^{*} TUnfold: S.Schmitt, arXiv:1205.6201

Jet Cross Sections, double differential in Q² and P_T jet

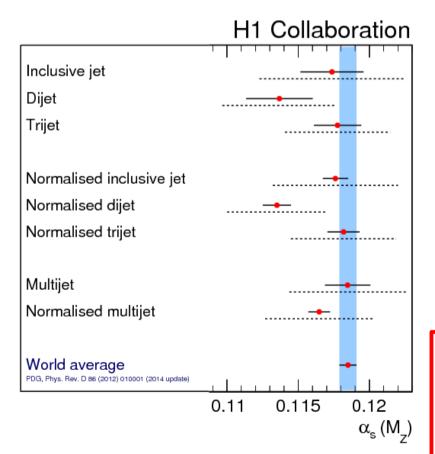

NLO pQCD Calculations:

- FastNLO, NLOJET++
 QCDNUM
- MSTW2008 PDF Other PDFs only small diff.
- $-\alpha_{\rm S}({\rm M_{\rm Z}})=0.118$
- Scales

$$\mu_r^2 = (Q^2 + P_T^2)/2$$
 $\mu_f^2 = Q^2$ $\mu_r^2 = \mu_f^2 = Q^2$ (NC DIS)

- Hadronisation & EW Corrections
- Theory uncertainty: Scale variations x 2 / x 0.5

NLO calculations describe well Inclusive Jet, Dijet & Trijet differential Cross Sections

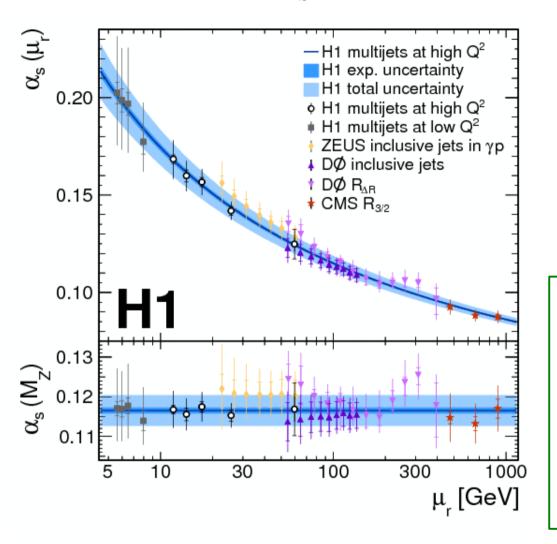


Experimental precision

- Better than Theory uncertainties
- Dominated by
 - Statistics,
 - Jet Energy Scale Uncertainty
 - MC Model uncertainty

Normalised Dijet
Cross Sections:
Do lie below the
NLO prediction
in many places

- Jet Cross section measurements fitted with NLO theory Fit both absolute and normalised Jet Cross sections Fit Jet Cross sections both individually and simultaneously
- Iterative χ^2 minimisation, using Tminuit
- $\alpha_s(M_z)$ free parameter
- Systematic errors handled as nuisance parameters in the fits


- Results consistent within total uncertainties
- Results consistent with world average
- Highest precision using Normalised Multijets measurements:

$$\alpha_s(M_Z) = 0.1165 (8)_{exp} (38)_{pdf,theo.}$$

- Dijet results have lower values, but within total uncertainties
- Trijet values have smallest errors $(\sim \alpha_s^2)$

NLO theory precision
worse than experimental precision
=> NNLO calculations needed for jets!

Determination of α_s at various values of scale μ_r

H1:

5 fits, using Normalised Multijets Each fit based on cross section set with comparable values of μ_r

 α_s values with excellent precision from H1 Normalised Multijets

Prediction:

- RGE using $\alpha_s(M_z)$ value from H1 Normalised Multijets
- Predicted Running of α_S
 agrees well with other Jet Data
 over >2 orders of magnitude

 $\alpha_s(M_Z) = 0.1165 \, (8)_{exp} \, (38)_{pdf,theo.}$

Most precise value derived so far from Jet Data, at NLO, in one single experiment

H1 in good agreement with other Jet Data

Trijet Production in Deep Inelastic Scattering at HERA

ZEUS-prel-14-008

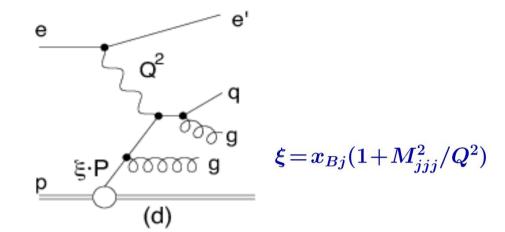
Trijet Production in DIS at HERA

ZEUS Trijets

ZEUS-prel-14-008

$$125 < Q^2 < 20000 \text{ GeV}^2$$

 $0.2 < y < 0.6$

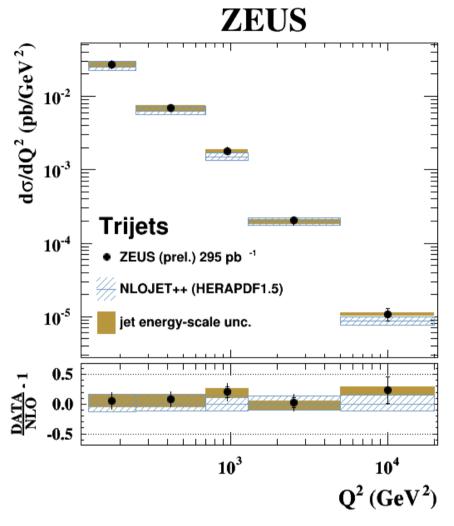

- Inclusive k_{T} algorithm
- Select events with at least 3 Jets:

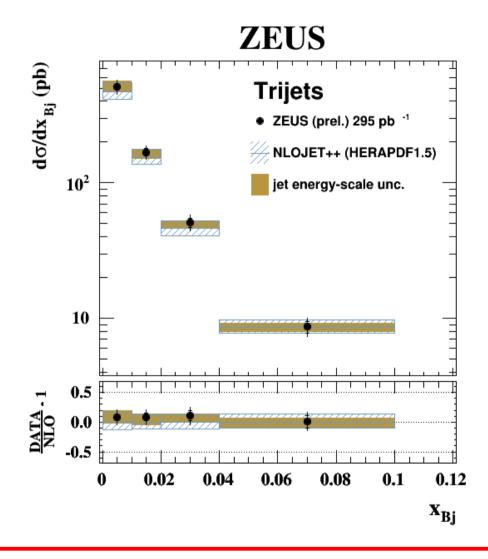
$$E_{T,B}^{jet}\!>\! 8~{
m GeV} \quad -1\!<\!\eta_{lab}^{jet}\!<\!2.5 \ M_{jj}\!>\! 20~{
m GeV}$$

- 2199 events selected

Bin averaged Cross Sections differential in

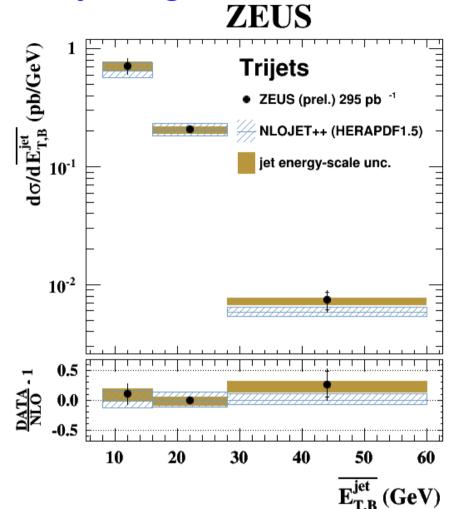
$$Q^2,~x_{Bj},~\xi~~ ext{and}~~\overline{E_{T,B}^{jet}}$$
 $\left(egin{array}{c} \overline{E_{T,B}^{jet1}}+E_{T,B}^{jet2}+E_{T,B}^{jet3})/3 \end{array}
ight)$




NLO QCD Calculations:

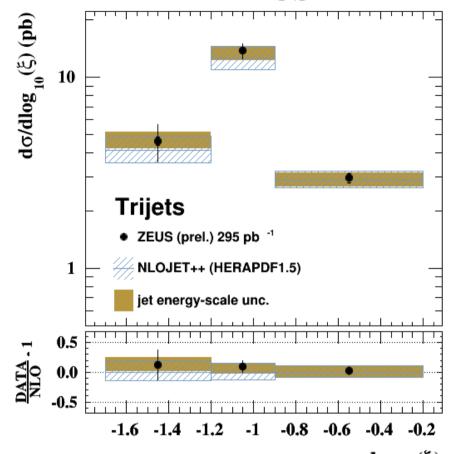
- NLOJET++, HERAPDF1.5
- $-\alpha_{s}(MZ) = 0.1176$
- Scales $\mu_r^2 = Q^2 + \langle E_T^{jet} \rangle^2 \quad \mu_f^2 = Q^2$ $\langle E_T^{jet} \rangle$ Average E_T of 3 leading jets
- Theory uncertainty: By varying scales $\times 2 / \times 0.5$ $\alpha_s(M_7) + -0.002$

Trijet Single differential Cross Sections


Jet Energy Scale Uncertainty:

1% for
$$E_{T,Lab}^{jet} > 10 \text{ GeV}$$

3% for $E_{T,Lab}^{jet} < 10 \text{ GeV}$


Good agreement of NLO calc. with data, in shape and in normalisation

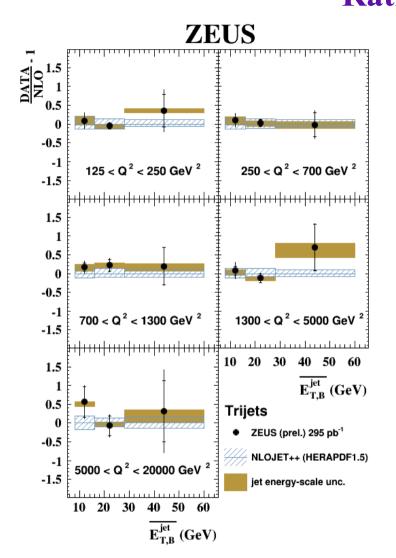
Trijet Single differential Cross Sections

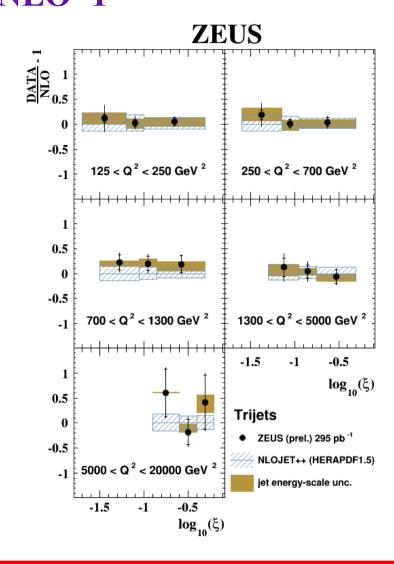
ZEUS Trijets

ZEUS

Large E_T jet:

Test of Matrix Element in pQCD

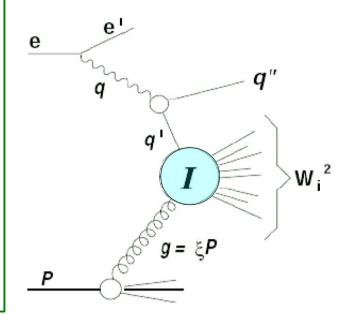

High ξ values suppression: $\log_{10}(\xi)$ Due to decreasing quark /gluon densities
Low ξ values suppression:


Due to E_{T}^{jet} selection cuts

NLO calculation agrees well with data, in shape and in normalisation

Trijet Double Differential Cross Sections, Ratios Data/NLO -1

Data sensitive to strong interaction dynamics and proton structure Use for α_s extraction and for PDF constraints


Search for QCD Instanton-Induced Processes in DIS at HERA

H1-Prelim-14-031

Instantons

- Induce anomalous processes in Standard Model
- Non-perturbative fluctuations of Gluon field, tunneling between QCD vacua
- Their observation would be an important confirmation of the Non-perturbative QCD part of SM
- Can they be observed at HERA, in quark gluon fusion events?

H1 QCD Instantons

Theory says Yes:

- Sizeable cross section predicted, 10-100 pb
- Theory and Phenomenology A.Ringwald, F.Schrempp a.o:

hep-ph/9411217, hep-ph/9609445, hep-ph/9806528, hep-ph/9903039, hep-ph/9909338, hep-ph/9911516, hep-ph/0012241, hep-ph/0109032

H1 and ZEUS searches:

- early HERA I data
- No signal seen
- Upper limits
- Compatible with Theory predictions

H1:

DESY 02-062, hep-ex/0205078

ZEUS:

DESY 03-201, hep-ex/0312048

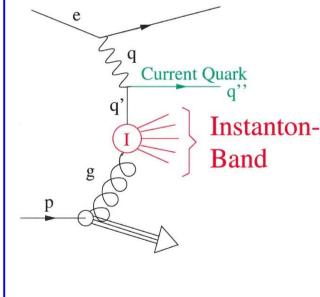
H1 QCD Instantons

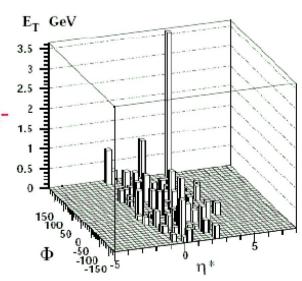
Predicted Cross Section:

- Much smaller than Standard DIS cross section
- Key Issue of Search:
 Suppress Standard DIS Background!
 ==> Use Topology differences

Predictions for Topology:

- Hard "current" jet
- Instanton-band
 - High Multiplicity
 - Isotropy in I rest frame
 - Parton "democracy" u,d,s (strange particles!)


A.Ringwald, F.Schrempp:


- **QCDINS** hep-ph/9911516
 - MC Event generator
 - Full Event topology
 - Suggested Phase Space

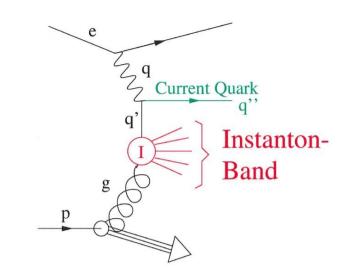
$$x_{Bj}\!>\!0.001 \quad 0.1 < y < 0.9 \ Q^2\!>\!Q_{min}'^2pprox\!113~{
m GeV}^2 \quad x'\!>\!0.35$$

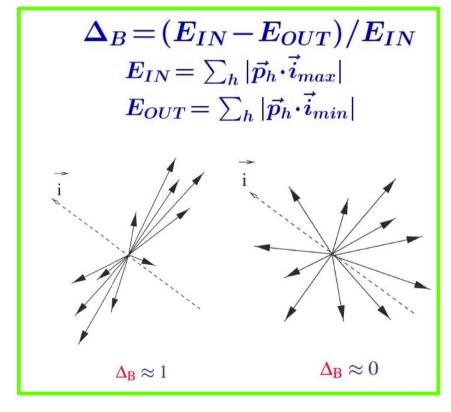
Variables of I-Subprocess

$$Q'^2 = -q'^2 = -(q-q'')^2 \ x' = Q'^2/(2g\cdot q')$$

HERA II data:

358 pb⁻¹ (17x larger than in previous search)

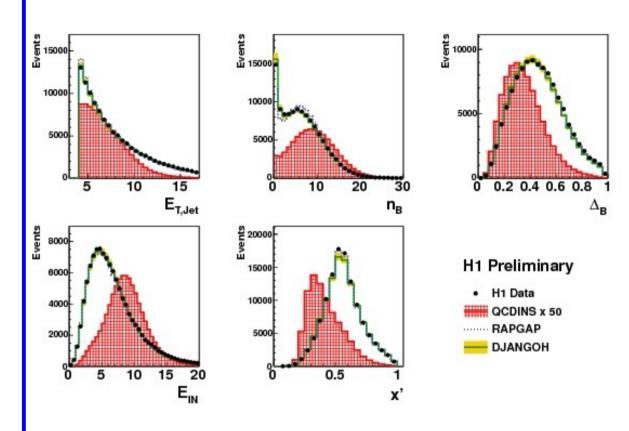

DIS Selection:


 $150 < Q^2 < 15000 \text{ GeV}^2; \quad 0.2 < y < 0.7$

QCD Instanton search strategy

- Find hardest jet ("Current Jet") (k_T algorithm in Hadronic CMS)
- Remove Current jet from HFS objects
- Boost remaining objects to I-band CMS
 - Charged Multiplicity n_R
 - Transverse Energy of "band" $E_{T,B}$
- Topological variables
 - $-\mathbf{E}_{IN}$, \mathbf{E}_{OUT} , $\mathbf{E}_{T,Jet}$
 - Isotropy $\Delta_{\rm B}$
 - Sphericity, Fox-Wolfram moments

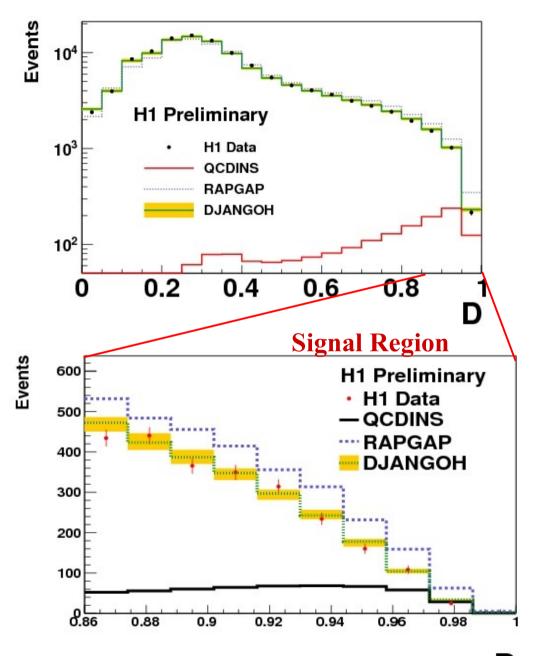
H1 QCD Instantons


MultiVariate Analysis Use PDERS method and TMVA

(Probability Density Estimator with Range Search)

Select 5 observables

- with good S/B separation
- with reasonable background description


Training with
QCDINS (Signal)
DJANGOH / RAPGAP (Bkgr)
(In the further analysis,
only DJANGOH used)

From these 5 observables, form the Discriminator

PDERS Discriminator distribution

H1 QCD Instantons

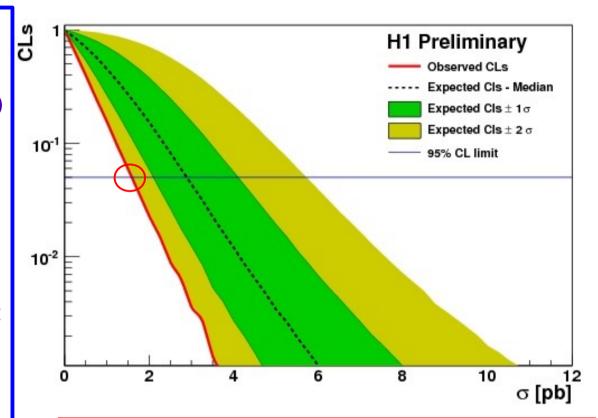
Good Discriminator Description in background region ==> Signal region D > 0.86

(Gives smallest statistical error for a hypothetical Instanton signal)

Good description of Data by DJANGOH in both regions

The expected Instanton signal, > 500 events, is not seen
Theory prediction:

$$\sigma_{QCDINS} = 10 \pm 2~ ext{pb}$$


Thus:

no Signal, get Upper Limit

- CLs vs. Signal cross section: from toy MC experiments
 - Background only (DJANGOH)
 - Signal + Background
- Upper Limit Conf. Level given by 1 CLs
- Expected CLs-Median Limit: (Background Only hypothesis)

$$2.9^{+1.2,+2.8}_{-0.8,-1.3}$$
 pb at 95% C.L.

Observed Upper Limit
 1.6 pb at 95% C.L.
 (lower than Median Expectation, due to downward fluctuation in data)

The Ringwald / Schrempp Prediction for this Phase Space:

$$\sigma_{QCDINS}=10\pm 2~
m pb$$

Seems to be excluded

Measurement of Charged Particle Spectra in ep DIS at HERA

DESY 13-012, arXiv:1302.1321

EPJ C73 (2013) 2406

Hadron production in DIS:

- Transverse Momentum
 - At Low p_T

Constraints on Hadronisation parameters

- At High p_T

Sensitive to dynamics of Parton Evolution (since high p_T disfavored by strong p_T ordering)

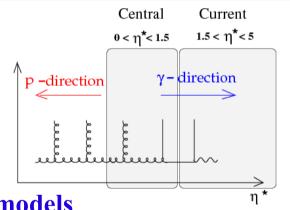
Hadronic CMS:

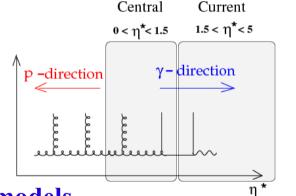
Look at 2 regions*

in the γ -hemisphere $\eta^* > 0$

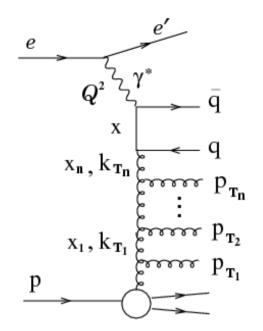
Central region

 $0 < \eta^* < 1.5$


Sensitivity to Parton Shower models


Current region

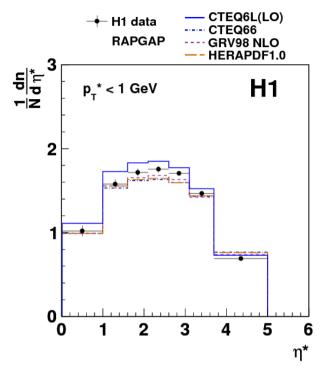
 $1.5 < \eta * < 5$


Sensitivity to hard scatter

Target region (p-remnant), i.e. $\eta^ < 0$ is not accessible in this analysis

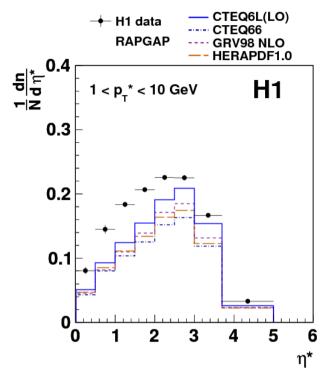
 $-2 < \eta < 2.5$ **LAB** $p_T > 150 \; {\rm MeV}$ $0 < \eta^* < 5$ **HCMS** $0 < p_T^* < 10 \text{ GeV}$

H1 at HERA II


 88.6 pb^{-1} (2006 data)

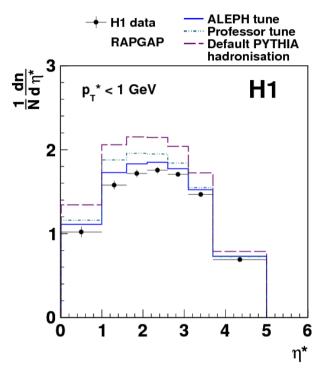
$$5 < Q^2 < 100 \text{ GeV}^2$$

Charged Particle Densities as functions of η^* and p_T^* differential in Q^2 and x_{Bj}

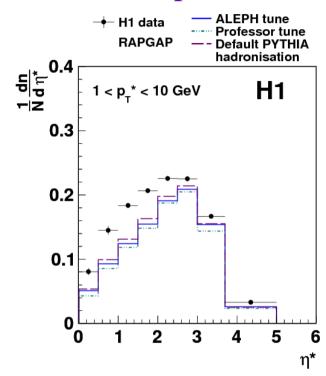

η* dependence in Low and High p_T* regions

H1 Charged Particle Spectra

Low p_T* region:


- Flat plateau in η*
 Decrease at low values due to acceptance
- RAPGAP (DGLAP-like) describes data well
- Different PDFs
 Only small differences

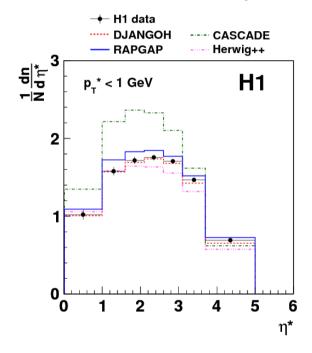
High p_T* region:


- Density increase towards photon direction, as expected from strong \mathbf{p}_{T} ordering
- RAPGAP below data
- Differences larger among PDFs

RAPGAP with 3 different sets of hadronisation parameters

Low p_T* region:

- Considerable differences between different parameter sets
- The LEP tuning (ALEPH) describes the data best

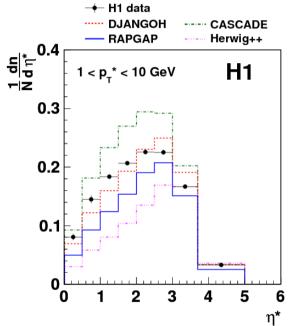

High p_T* region:

- Only small differences between different parameter sets
- No set is able to describe data

Parton Shower Model Dependence

DJANGOH: PS from CDM (ARIADNE)

RAPGAP: Collinear PS, virtuality ordered



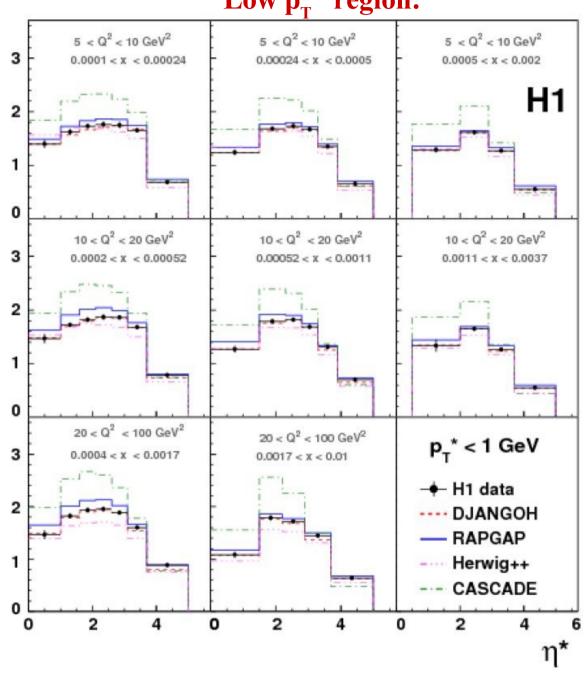
Low p_T* region:

- CASCADE fails description
- Other models describe data

H1 Charged Particle Spectra

CASCADE: angularly ordered, Small x improved CCFM PS HERWIG++: Collinear PS, angularly ordered

High p_T* region:

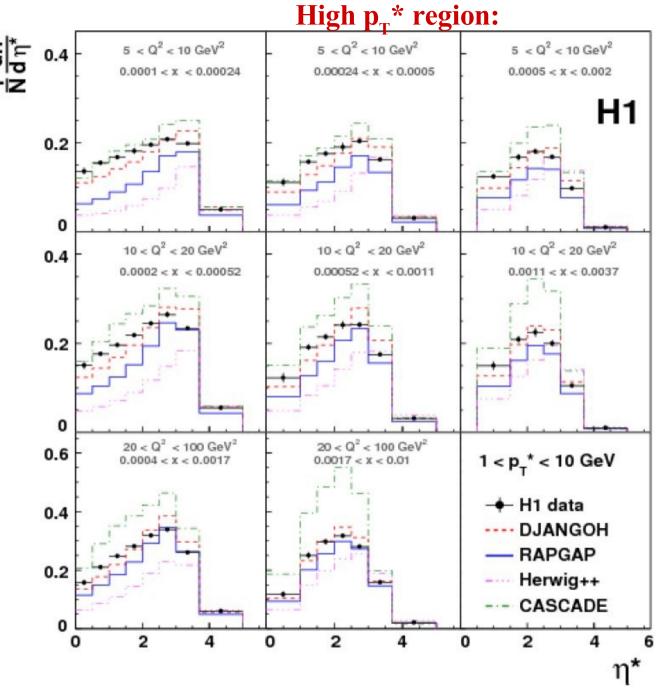

- CDM (DJANGOH)
Best description
RAPGAP, HERWIG++
Below data
CCFM (CASCADE) above data

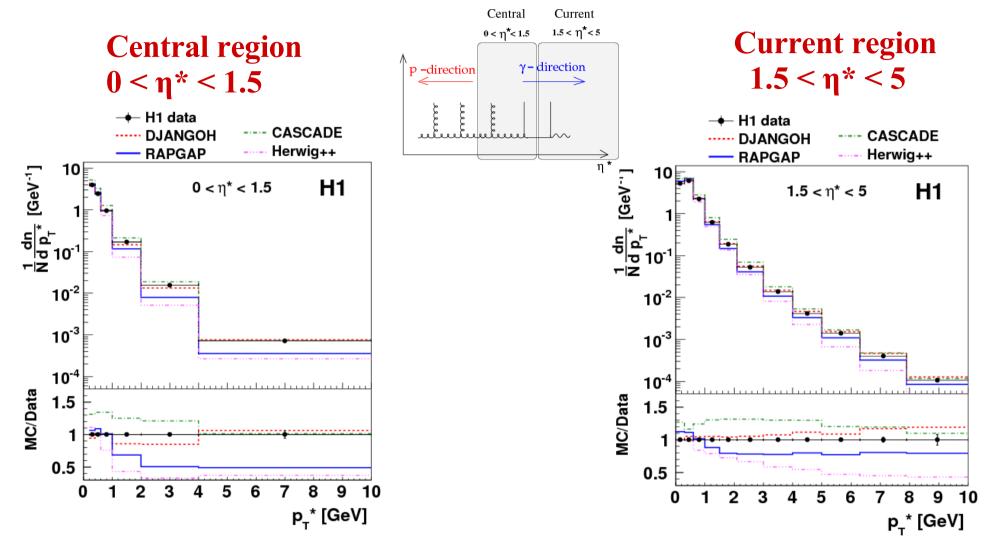
Low p_T^* region: η^* dependence in bins of \mathbb{Q}^2 , x

H1 Charged Particle Spectra

Low p_T* region:

- Plateau at $1.6 < \eta^* < 4.0$ Shrinks with increasing Q^2
- All models, except CASCADE, describe data reasonably well over full range of Q² and x




High p_T^* region: η^* dependence in bins of \mathbb{Q}^2 , \mathbb{X}

H1 Charged Particle Spectra

- No model with good description in full range

- CDM (DJANGOH)
 Best description
- RAPGAP, HERWIG (collinear PS models) Fail at low Q², get better at higher Q²
- CCFM (CASCADE)
 (small x improved)
 OK at low x and low Q²
 Fails at large Q²

Sensitivity to higher order radiation

Sensitivity to hard scattering

Collinear PS models (RAPGAP, HERWIG++) fail, particularly at high p_T*

SUMMARY

- The Hadronic Final State, in NC DIS at HERA: New Results from H1 and ZEUS, using high statistics HERA II data

Multijet Cross Section Measurements from H1 and ZEUS

- Double Differential Jet Cross Sections, in $\,{\bf Q}^2,\,P_{\scriptscriptstyle T}^{\ jet}$ and ξ
 - H1: Inclusive Jets, Dijets and Trijets, ZEUS: Trijets
- Good description of data by NLO pQCD calculations
- Experimental Precision of Jet measurements better than NLO Precision NNLO calculations for Jets needed!
- H1: Most precise $\alpha_{\rm S}({\rm M_Z})$ extraction (so far) from Jet measurements, $\alpha_s(M_Z)=0.1165\,(8)_{exp}\,(38)_{pdf,theo.}$
- α_s runs, in agreement with RGE and with other Jet Data results

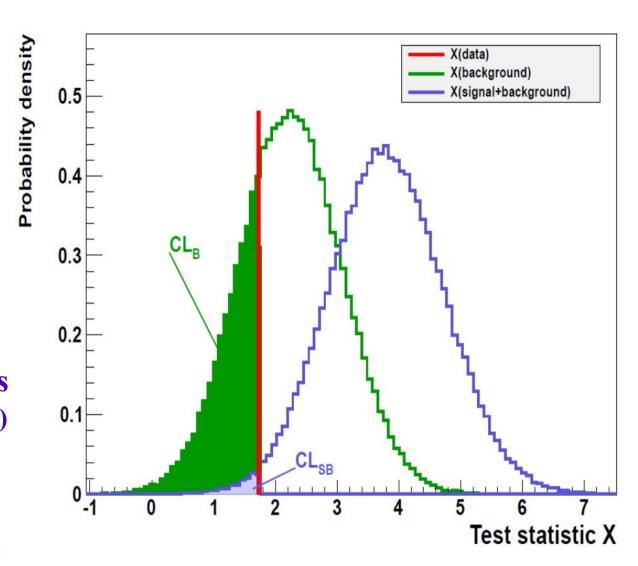
H1: Search for QCD-Instanton Induced Processes

- No signal found, Upper Limit $\sigma_{Instanton} < 1.6 \text{ pb}$, 95% C.L.
- Ringwald / Schrempp prediction: 10 +/- 2 pb Seems to be excluded
- H1: Charged particle Spectra Measurements
 - Particle Densities as function of p_T^* and η^* , differential in Q2, x
 - Enable extensive tests of Hadronisation and Parton Shower Models

Backup

Upper Limit calculation, CLs method

H1 QCD Instantons


- Test Statistics

$$X = \sum\limits_{i=1}^{N_{bin}} w_i n_i$$

Sum over all bins in D

- For better sensitivity, use full D range (0 1)
- Perform toy MC experiments
 - Background only (DJANGOH)
 - Signal + Background

$$CL_S = CL_{SB}/CL_B$$

Upper Limit Confidence Level: $1-CL_S$