Diffraction at HERA

Vladimir Spaskov (JINR) on behalf of the H1 and ZEUS Collaborations

International Workshop "Hadron structure and QCD" 30 June - 4 July 2014, Gatchina, Russia

Outline:

- Introduction - HERA and diffractive scattering
- Inclusive diffraction (LP + LRG)
- Diffractive dijets in DIS and PhP
- Vector meson production
- Summary

HERA ep collider

>The world's only electron/positron-proton collider at DESY, Hamburg $>\mathrm{E}_{\mathrm{e}}=27.6 \mathrm{GeV}, \mathrm{E}_{\mathrm{p}}=920 \mathrm{GeV}$ (also 820, 460, 575 GeV) $>$ centre-of-mass energy up to $\sqrt{ } \mathbf{s} \approx 320 \mathrm{GeV}$
>Two collider experiments: H1 and ZEUS

- data taken:

HERA-1 (1992-2000)
HERA-2 (2003-2007)

- total lumi $\sim 0.5 \mathrm{fb}^{-1}$ per experiment

DIS: Probe structure of proton $\rightarrow F_{2}$

One of first HERA surprises: $\sim 10 \%$ of DIS events have no activity in proton region \rightarrow diffractive interactions

HERA: ~10\% of low-x DIS events diffractive
Probe structure of color singlet exchange $\rightarrow F_{2}{ }^{D}$

$$
\begin{aligned}
& \mathrm{Q}^{2}=-\mathrm{q}^{2} \text { Virtuality of the photon } \\
& \mathrm{Q}^{2} \approx 0 \rightarrow \text { photoproduction } \\
& \mathrm{Q}^{2} \gg 0 \rightarrow \text { DIS }
\end{aligned}
$$

Momentum fraction of proton carried by color singlet exchange

$$
x_{I P}=\frac{q \cdot\left(p-p^{\prime}\right)}{q \cdot p} \approx \frac{Q^{2}+M_{x}^{2}}{Q^{2}+W^{2}}
$$

Momentum fraction of color singlet carried by struck quark

$$
\beta=\frac{x}{x_{I P}} \approx \frac{Q^{2}}{Q^{2}+M_{x}^{2}}
$$

> 4-momentum transfer squared

$$
\text { Inelasticity } \quad y=\frac{p \cdot q}{p \cdot k} \quad(0 \leq y \leq 1)
$$

Diffractive scattering

Experimental Methods

Large Rapidity Gap:

+ high statistics
- contains proton dissociative background $M_{y}<1.6 \mathrm{GeV}$
- limited by systematic uncertainties related to unmeasured proton

Proton Spectrometer:

+ no proton dissociative background $M_{y}=m_{p}$
$+x_{I P}$ and t-measurements
+ access to high x_{IP} range (IP+IR)

- low geometrical acceptance

Forward Detectors H1/ ZEUS

Inclusive diffractive cross section:

$$
\frac{d^{4} \sigma^{e p \rightarrow e^{\prime} X p^{\prime}}}{d \beta d Q^{2} d x_{I P} d t}=\frac{4 \pi \alpha_{e m}^{2}}{\beta Q^{4}}\left(1-y+\frac{y^{2}}{2}\right) \sigma_{r}^{D(4)}\left(\beta, Q^{2}, x_{I P}, t\right)
$$

Relation to F_{2}^{D} and $F_{L}^{D}: \sigma_{r}^{D(4)}\left(\beta, Q^{2}, x_{I P}, t\right)=F_{2}^{D(4)}-\frac{y^{2}}{1+(1-y)^{2}} F_{L}^{D(4)} \begin{aligned} & \sigma_{\mathrm{r}}^{\mathrm{D}(4)} \approx \mathrm{F}_{2}^{\mathrm{D}(4)} \\ & \text { at low and medium y }\end{aligned}$

QCD factorization

(proven for DDIS by Collins et al.)

$$
\sigma^{D}\left(\gamma^{*} p \rightarrow X p\right)=\sum_{\text {parton_i }} f_{i}^{D}\left(x, Q^{2}, x_{I P}, t\right) \cdot \sigma^{\gamma^{* i}}\left(x, Q^{2}\right)
$$

$\sigma^{\gamma^{* i}}$ - universal hard scattering cross section (same as in inclusive DIS)
$f_{i}^{D} \quad$ - DPDFs, valid at fixed $\mathrm{x}_{\mathrm{IP}}, \mathrm{t}$ which obey DGLAP universal for diffractive ep DIS (inclusive, dijets, charm)

Regge factorization
(e.g. Resolved

Pomeron Model by Ingelman \& Schlein)

- shape of diffractive PDFs is independent of x_{IP}, t while normalization is controlled by pomeron flux $f_{I P / p}\left(x_{I P}, t\right)$

Inclusive diffraction

HERA combined cross sections (LP method)

> Proton spectrometers data in $0.09<|t|<0.55 \mathrm{GeV}^{2}$
$>$ Combination method uses iterative X^{2} minimization and includes full error correlations
$>$ First combined inclusive diffractive cross sections:

- H1: EPJ C71 (2011) 1578
- H1: EPJ C48 (2006) 749
- ZEUS: Nucl. Phys B816 (2009) 1
- ZEUS: EPJ C38 (2004) 43
\rightarrow Different exp. data are consistent each other $\chi^{2}{ }_{\text {min }} /$ ndof $=133 / 161$
\rightarrow Total uncertainty on cross section is 6% for the most precise points

HERA combined cross sections (LP method)

n > The combination results is more precise results and
$>$ wide kinematic range:

$$
\begin{aligned}
& -2.5 \leq \mathrm{Q}^{2} \leq 200 \mathrm{GeV}^{2} \\
& -0.0018 \leq \beta \leq 0.816 \\
& -0.00035 \leq \mathrm{x}_{\mathrm{IP}} \leq 0.09 \\
& -0.09<\mathrm{It} \mid<0.55 \mathrm{GeV}^{2}
\end{aligned}
$$

$>$ The results provide the most precise determination of the absolute normalization of ep $\rightarrow e X p$ cross section

Large Rapidity Gap

$>$ Combined all H1 measurements
$>$ LRG method
$>$ Increase in statistics
reduction of uncertainties
\rightarrow the dipole model can describe the low Q^{2} kinematic domain
\rightarrow DPDF fits are more successful to describe the region of high Q^{2}

Diffractive dijets in DIS and PhP

Jet kinematics

Direct photon:
 No photon remnant $X_{V}=1$ (at parton level)
 Dominant for high Q ${ }^{2}$ (DIS)

Resolved photon:

Photon remnant $x_{y}<1$
Dominant for low Q^{2} (PhP)

Diffractive dijets in DIS

Large Rapidity Gap

$>$ High stat. and wide kin. range: $4<\mathrm{Q}^{2}<80 \mathrm{GeV}^{2}, 0.1<\mathrm{y}<0.7, \mathrm{E}_{\mathrm{T}}>5.5,4.0 \mathrm{GeV}$ $>$ Data compared to NLOJET++ with DPDF H1 2006 Fit

Diffractive dijets in DIS

$>$ Leading proton measured in Very Forward Proton Spectrometer
$>$ Kinematic range: $4<\mathrm{Q}^{2}<80 \mathrm{GeV}^{2}, 0.2<\mathrm{y}<0.7, \mathrm{E}_{\mathrm{T}}>5.5,4.0 \mathrm{GeV}$

\rightarrow NLO QCD predictions describe data

Diffractive dijets in PhP

>In diffractive DIS factorization experimentally confirmed by H 1 and ZEUS
>in p-p collisions (Tevatron) the factorization is broken

Tevatron vs HERA

> factorization breaking observed by H 1 in PhP, but not observed by ZEUS
$>$ theory predicts suppression of resolved photoproduction
> the suppression is supposed to be stronger at low E_{T} scales and low x_{γ}
> however no x_{y} dependence of suppression-factor visible

Diffractive dijets in PhP
$>$ Leading proton measured in Very Forward Proton Spectrometer
$>$ Kin. range: $\mathrm{Q}^{2}<2 \mathrm{GeV}^{2}, 0.2<\mathrm{y}<0.7, \mathrm{E}_{\mathrm{T}}>5.5,4.0 \mathrm{GeV}$

\rightarrow Data lower than NLO prediction,
\rightarrow No hints for a higher suppression for $\mathrm{x}_{\mathrm{Y}}<1$

Diffractive dijets with leading proton，DIS and PhP

$>$ Measurement with VFPS confirms LRG measurement
$>$ Suppression factor in PHP $S=0.55 \pm 0.10$（data）± 0.02（theor．）
$>$ No hint of a dependence of the suppression on $z_{I P}$ and E_{T} of leading jet

Diffractive dijets in DIS

Exclusive production

$$
e+p \rightarrow e^{\prime}+p^{\prime}+j e t+j e t
$$

>High stat and wide kin. range:
$\mathrm{Q}^{2}>25 \mathrm{GeV}^{2}, 90<\mathrm{W}<250 \mathrm{GeV}$, $\mathrm{P}_{\mathrm{T}}>2 \mathrm{GeV}$
$>$ Measure of shape of the azimuthal angular distribution of exclusive dijets in DDIS

2-gluon exchange

Boson-Gluon Fusion

ZEUS

Vector meson production

Vector meson production

>Soft physics: Vector Dominace Model, Regge theory

$$
\begin{array}{cc}
\begin{array}{|c|c}
\sigma \propto W_{p p}^{\delta} & - \text { Weak energy dependence, } \delta \sim 0.2 \\
& \delta=4\left(\alpha_{I P}(t)-1\right) \quad \alpha_{\mathrm{IP}}(\mathrm{t})=1.08+0.25 \mathrm{t}(\mathrm{DL}) \\
\frac{d \sigma}{d t} \propto e^{-b t} & \text { - Shrinkage of diffractive peak } \\
& b(W)=b_{0}+4 \alpha^{\prime} \ln \left(\frac{W}{W_{0}}\right) \quad b_{0} \sim 10 \mathrm{GeV}^{-2}
\end{array}
\end{array}
$$

$>$ In presence of a hard scale $\left(\mathrm{M}_{\mathrm{VM}}, \mathrm{Q}^{2}, \mathrm{t}\right)$ calculations in pQCD are possible
 pQCD description (exchange of ≥ 2 gluons)

Fast increase of the cross section with energy due to the gluon density in proton

$$
\sigma \sim \mid x g\left(x,\left.Q^{2}\right|^{2}\right.
$$

Large W corresponds to small x

$$
W^{2} \propto \frac{1}{x}
$$

Vector meson photoproduction

W-dependence

$>$ The cross section dependence on W can be parameterized as: $\sigma \propto \mathrm{W}_{\gamma \mathrm{p}}{ }^{\delta}$

Low mass (ρ, ω, φ) - no perturbative scale \rightarrow weak energy dependence

High mass $\left(J / \Psi, \Psi^{\prime}, Y\right)$ - perturbative scale
\rightarrow strong energy dependence

J / Ψ photoproduction

Elastic and p-diss. vs W_{yp}

> Parameterization (for elastic and p-diss.): $\sigma=N\left(W_{\mathrm{yp}} / \mathrm{W}_{0}\right)^{\delta}$ with $\mathrm{W}_{0}=90 \mathrm{GeV}$
> Simultaneous fit of elastic and p -diss cross sections, including correlations, including previous H 1 (EPJ C46(2006)585)
> Results: $\gamma \mathrm{p} \rightarrow \mathrm{J} / \psi \mathrm{p}: \quad \delta_{\text {el }}=0.67 \pm 0.03$

$$
\gamma \mathrm{p} \rightarrow \mathrm{~J} / \psi \mathrm{Y}: \quad \delta_{\mathrm{pd}}=0.42 \pm 0.05
$$

> The results is typical for the hard processes

Comparison to other experiments

> H 1 measurement in the transition region from fixed target to previous HERA data
> Good agreement with previous HERA measurements

Fixed target data: steeper slope, lower normalization

Elastic J / ψ photoproduction

> The t-dependence of elastic cross section carries information about the transverse size of the interaction region

- elastic: $\mathrm{d} \sigma / \mathrm{d} t=N_{e l} e^{-b_{e l}|t|}$
p-diss cross section dominant for $|t|>1 \mathrm{GeV}^{2}$
- p-diss: $\mathrm{d} \sigma / \mathrm{d} t=N_{p d}\left(1+\left(b_{p d} / n\right)|t|\right)^{-n}$
$>$ Results:

$$
\begin{aligned}
& \gamma \mathrm{p} \rightarrow \mathrm{~J} / \psi \mathrm{p}: \mathrm{b}_{\mathrm{el}}=(4.88 \pm 0.15) \mathrm{GeV}^{-2} \\
& \gamma \mathrm{p} \rightarrow \mathrm{~J} / \psi \mathrm{Y}: \mathrm{b}_{\mathrm{pd}}=(1.79 \pm 0.12) \mathrm{GeV}^{-2} \\
& \mathrm{n}=3.58 \pm 0.15
\end{aligned}
$$

$>$ The new data extend the reach to small values of $|t|$
$>$ Slope parameter $\mathrm{b}_{\text {el }}$ is typical for the hard processes

Charmonium production in DIS $\quad \sigma_{\Psi(2 \mathrm{~S})} / \sigma_{\mathrm{J} / \Psi(1 \mathrm{~S})}$ ratio

$$
\begin{aligned}
\mathrm{J} / \psi(1 \mathrm{~S}) & \rightarrow \mu+\mu- \\
\psi(2 S) & \rightarrow \mu+\mu-
\end{aligned}
$$

Kinematic range:
$30 \leq \mathrm{W} \leq 210 \mathrm{GeV}$
$5 \leq \mathrm{Q}^{2} \leq 70 \mathrm{GeV}^{2}$
$|t| \leq 1 \mathrm{GeV}^{2}$
$\rightarrow \sigma_{\Psi(2 S)} / \sigma_{J / \Psi(1 \mathrm{~S})}$ ratio gives information about the dynamics of the hard process \rightarrow pQCD predicts rise of ratio with Q^{2}

Ratio $\sigma(\Psi(2 S)) / \sigma(J / \Psi(1 S))$ vs $\mathbf{Q}^{2}, \mathrm{~W}$ and $|\mathrm{t}|$

ZEUS

ZEUS

- Significantly improved accuracy \rightarrow Lumi \uparrow for HERA II

ZEUS

ZEUS

- Indication of an increase with Q^{2}
- Independent of W
- Independent of $|t|$

Exclusive PhP of ρ^{0} meson with forward neutron

- double peripheral process (DPP), involving π-exchange at the proton vertex

Kinematic range: $\mathrm{Q}^{2}<2 \mathrm{GeV}^{2},|\mathrm{t}|<1 \mathrm{GeV}^{2}$, $20<\mathrm{W}_{\mathrm{yp}}<100 \mathrm{GeV}, \mathrm{E}_{\mathrm{n}}>120 \mathrm{GeV}$

No hard scale present \Rightarrow Regge framework is most appropriate

Exclusive PhP of ρ^{0} meson with forward neutron

$>$ Regge motivated fit W^{δ} yields $\delta<0$ (in qualitative agreement with DPP and in contrast to MC, $\delta_{\text {MC }}=0.08 \pm 0.02$, which is expected from purely IP exchange)

>DPP explanation: low mass $\pi^{+} n$ state \rightarrow large slope high masses \rightarrow less steep slope

Differential cross sections do/dp ${ }_{\mathrm{t}, \mathrm{p}}^{2}$ show the behaviour typical for exclusive DPP

Summary

- Combined proton spectrometer data provide better precision
- LRG Inclusive Diffraction is measured with improved precision
- QCD factorization is confirmed by diffractive dijet measurements in DIS; Data described by NLO QCD calculations
- H1: suppression of diffractive dijet photoproduction ZEUS: no suppression; difference between measurements is not understood
- The cross section of p-diss. diffractive J / Ψ production is measured precisely at small $|t|$ for the first time at HERA.
- Photoproduction cross section for exclusive ρ^{0} production associated with leading neutron is measured for the first time at HERA.

Thank you for your attention!

