Diffraction at HERA

Vladimir Spaskov (JINR) on behalf of the H1 and ZEUS Collaborations

International Workshop "Hadron structure and QCD" 30 June – 4 July 2014, Gatchina, Russia

Outline:

- Introduction HERA and diffractive scattering
- Inclusive diffraction (LP + LRG)
- Diffractive dijets in DIS and PhP
- Vector meson production
- Summary

HERA ep collider

The world's only electron/positron-proton collider at DESY, Hamburg ➤ E_e = 27.6 GeV, E_p = 920 GeV (also 820, 460, 575 GeV) ≻centre-of-mass energy up to √s ≈320 GeV data taken: Two collider experiments: H1 and ZEUS HERA-1 (1992-2000) HERA-2 (2003-2007) • total lumi ~ 0.5 fb⁻¹ per experiment H1 Halle NORD (H1 Hall NORTH (H1) Hall nord (H1) HERA Halle OST (HERMES) Hall EAST (HERMES) Hall est (HERMES) X p (920 GeV) e¹ (27.6 GeV) Halle WEST (HERA-B) Hall WEST (HERA-B) Hall ouest (HERA-B) lektronen / Positrone ZEUS Electrons / Positrons Electrons / Positons Protoner DIS: Probe structure of proton $\rightarrow F_2$ ratage nchrotronstrahlun ynchrotron Radiatio Halle SÜD (ZEUS) Hall SOUTH (ZEUS, Hall sud (ZEUS One of first HERA surprises: ~10% of DIS events have no activity in proton region \rightarrow diffractive interactions

Diffractive scattering

HERA: ~10% of low-x DIS events diffractive

Probe structure of color singlet exchange $\rightarrow F_2^{D}$

 $\begin{array}{ll} Q^2 = -q^2 & \mbox{Virtuality of the photon} \\ Q^2 \approx 0 & \rightarrow \mbox{photoproduction} \\ Q^2 >> 0 & \rightarrow \mbox{DIS} \end{array}$

Momentum fraction of proton carried by color singlet
exchange
$$x_{IP} = \frac{q \cdot (p - p')}{q \cdot p} \approx \frac{Q^2 + M_x^2}{Q^2 + W^2}$$

Momentum fraction of color singlet carried by struck quark

$$\beta = \frac{x}{x_{IP}} \approx \frac{Q^2}{Q^2 + M_x^2}$$

4-momentum transfer squared $t = (p - p')^2$

Inelasticity
$$y = \frac{p \cdot q}{p \cdot k}$$
 ($0 \le y \le 1$)

Diffraction at HERA

Diffractive scattering

Experimental Methods

Large Rapidity Gap:

- + high statistics
- contains proton dissociative background $M_y < 1.6 \text{ GeV}$
- limited by systematic uncertainties related to unmeasured proton

Proton Spectrometer:

- + no proton dissociative background $M_y = m_p$
- + x_{IP} and t-measurements
- + access to high x_{IP} range (IP+IR)
- low geometrical acceptance

Forward Detectors H1/ZEUS FPS 90V 81V 80H B67 1 Q51,55,58 B47 Q42 B72 030.34.38 proton B77 B26 B18,22 Q6-15 H1**VFPS** ZEUS FNC LPS **S**5 S3 S2 **S1** S6 **S**4

Diffractive scattering

Factorization

Inclusive diffractive cross section:

$$\frac{d^{4}\sigma^{ep \to e'Xp'}}{d\beta dQ^{2}dx_{IP}dt} = \frac{4\pi\alpha_{em}^{2}}{\beta Q^{4}}(1-y+\frac{y^{2}}{2})\sigma_{r}^{D(4)}(\beta,Q^{2},x_{IP},t)$$

Relation to
$$F_2^D$$
 and F_L^D : $\sigma_r^{D(4)}(\beta, Q^2, x_{IP}, t) = F_2^{D(4)} - \frac{y^2}{1 + (1 - y)^2} F_L^{D(4)} = \sigma_r^{D(4)} \approx at low a$

 $\sigma_r^{D(4)} \approx F_2^{D(4)}$ at low and medium y

QCD factorization (proven for DDIS by Collins et al.)

$$\sigma^{D}(\gamma^{*}p \to Xp) = \sum_{parton_{i}} f_{i}^{D}(x, Q^{2}, x_{IP}, t) \cdot \sigma^{\gamma^{*}i}(x, Q^{2})$$

 $\sigma^{\gamma^{st_l}}$ - universal hard scattering cross section (same as in inclusive DIS)

Regge factorization

(e.g. Resolved Pomeron Model by Ingelman & Schlein)

 f_i^D

$$f_i^D(x,Q^2,x_{IP},t) = f_{IP/p}(x_{IP},t) \cdot f_i^{IP}(\beta = x/x_{IP},Q^2)$$
pomeron flux factor pomeron PDF

- shape of diffractive PDFs is independent of x_{IP} , twhile normalization is controlled by pomeron flux $f_{IP/p}(x_{IP}, t)$

Inclusive diffraction

Proton spectrometers data in H1 FPS HERA II **ZEUS LPS 2** 0.09<|t|<0.55 GeV² (20.225) م 0.225 طا x_{ID}=0.05 Combination method uses iterative χ^2 minimization and includes full error correlations 0.175 0.15 First combined inclusive diffractive cross sections: 0.125 H1: EPJ C71 (2011) 1578 0.1 - H1: EPJ C48 (2006) 749 0.075 ZEUS: Nucl. Phys B816 (2009) 1 0.05 ZEUS: EPJ C38 (2004) 43 0.025 → Different exp. data are consistent each other $\chi^2_{min}/ndof = 133/161$ Total uncertainty on cross section is 6% for the most precise points

The combination results is more precise results and

- wide kinematic range:
 - $2.5 \le Q^2 \le 200 \text{ GeV}^2$
 - $0.0018 \le \beta \le 0.816$
 - $0.00035 \le x_{IP} \le 0.09$
 - 0.09 < I t I < 0.55 GeV²
- ➤ The results provide the most precise determination of the absolute normalization of ep→eXp cross section

Large Rapidity Gap

. Χ_{IP} σ_r D⁽³⁾ Combined all H1 measurements 10² LRG method <u></u> Increase in statistics reduction of uncertainties 10 → the dipole model can describe the low Q² kinematic domain DPDF fits are more successful 10⁻¹ to describe the region of high Q²

Diffractive dijets in DIS and PhP

Jet kinematics

LO diagrams!

Diffraction at HERA

> High stat. and wide kin. range: $4 < Q^2 < 80 \text{ GeV}^2$, 0.1<y<0.7, $E_T > 5.5,4.0 \text{ GeV}$ Data compared to NLOJET++ with DPDF H1 2006 Fit

Leading proton measured in Very Forward Proton Spectrometer
 Kinematic range: 4 < Q² < 80 GeV², 0.2<y<0.7, E_T >5.5,4.0 GeV

→NLO QCD predictions describe data

Diffractive dijets in PhP

- In diffractive DIS factorization experimentally confirmed by H1 and ZEUS
- in p p collisions (Tevatron) the factorization is broken
- factorization breaking observed by H1 in PhP, but not observed by ZEUS
- theory predicts suppression of resolved photoproduction
- the suppression is supposed to be stronger at low E_T scales and low x_y
- however no x_γ dependence of suppression-factor visible

Leading proton measured in Very Forward Proton Spectrometer

➢Kin. range: Q² < 2 GeV², 0.2<y<0.7, E_T >5.5,4.0 GeV

Diffraction at HERA

Diffractive dijets in DIS

Exclusive production

- >High stat and wide kin. range: $Q^2 > 25 \text{ GeV}^2$, 90<W<250 GeV, $P_T > 2 \text{ GeV}$
- Measure of shape of the azimuthal angular distribution of exclusive dijets in DDIS

Dijet reconstructed with k_t jet algorithm

Data compared to

- 2 gluon exchange model (perturbative calculations based on proton PDF)
- BGF (calculations based on pomeron structure functions)

Data favour 2-gluon exchange model of $q\overline{q}$ production over BGF

Vector meson production

Vector meson production

Soft physics: Vector Dominace Model, Regge theory

>In presence of a hard scale (M_{VM} , Q^2 , t) calculations in pQCD are possible

pQCD description (exchange of \geq 2 gluons)

Fast increase of the cross section with energy due to the gluon density in proton $\sigma \sim |x g(x, Q^2)|^2$

Large W corresponds to small x

$$W^2 \propto \frac{1}{x}$$

measurement of VM production cross section \rightarrow test the transition between soft and hard processes

Vector meson photoproduction

W-dependence

> The cross section dependence on W can be parameterized as: $\sigma \propto W_{\gamma p}^{\delta}$

Low mass (ρ, ω, ϕ) – no perturbative scale \rightarrow weak energy dependence

High mass $(J/\psi, \psi', \Upsilon)$ – perturbative scale \rightarrow strong energy dependence

J/Ψ photoproduction

- > Parameterization (for elastic and p-diss.): $\sigma = N (W_{yp} / W_0)^{\delta}$ with $W_0 = 90 \text{GeV}$
- Simultaneous fit of elastic and p-diss cross sections, including correlations, including previous H1 (EPJ C46(2006)585)
- ➢ Results: γp → J/ψp: $\delta_{el} = 0.67 \pm 0.03$ γp → J/ψY: $\delta_{pd} = 0.42 \pm 0.05$
- The results is typical for the hard processes

H1 measurement in the transition region from fixed target to previous HERA data

J/Ψ photoproduction

- Good agreement with previous HERA measurements
- Fixed target data: steeper slope, lower normalization
 - Fit to H1 data extrapolated to higher Wγp describes the LHCb data
- LO and NLO fit to previous J/ψ data and extrapolated to higher Wγp.

The t-dependence of elastic cross section carries information about the transverse size of the interaction region

• elastic:
$$d\sigma/dt = N_{el} e^{-b_{el}|t}$$

p-diss cross section dominant for | t | > 1 GeV²

- p-diss: $\mathrm{d}\sigma/\mathrm{d}t = N_{pd} \left(1 + (b_{pd}/n)|t|\right)^{-n}$

Results:

$$\gamma p \rightarrow J/\psi p: b_{el} = (4.88 \pm 0.15) \text{ GeV}^{-2}$$

 $\gamma p \rightarrow J/\psi Y: b_{pd} = (1.79 \pm 0.12) \text{ GeV}^{-2}$
 $n = 3.58 \pm 0.15$

- The new data extend the reach to small values of |t|
- Slope parameter b_{el} is typical for the hard processes

Charmonium production in DIS

 $\sigma_{\Psi(2S)}/\sigma_{J/\Psi(1S)}$ ratio

 $\Rightarrow \sigma_{\Psi(2S)} / \sigma_{J/\Psi(1S)}$ ratio gives information about the dynamics of the hard process \Rightarrow pQCD predicts rise of ratio with Q²

Ratio $\sigma(\psi(2S))/\sigma(J/\psi(1S))$ vs Q², W and |t|

Exclusive PhP of ρ^0 meson with forward neutron

 double peripheral process (DPP), involving π-exchange at the proton vertex

Kinematic range: $Q^2 < 2 \text{ GeV}^2$, $|t| < 1 \text{ GeV}^2$, 20 < W_{yp} < 100 GeV, E_n > 120 GeV

No hard scale present \Rightarrow Regge framework is most appropriate

Process measured for the first time at HERA

Diffraction at HERA

Exclusive PhP of ρ^0 meson with forward neutron

► Regge motivated fit W^{δ} yields $\delta < 0$ (in qualitative agreement with DPP and in contrast to MC, $\delta_{MC} = 0.08 \pm 0.02$, which is expected from purely IP exchange)

DPP explanation:

low mass π^+n state \rightarrow large slope high masses \rightarrow less steep slope

Differential cross sections $d\sigma/dp^2_{t,p}$ show the behaviour typical for exclusive DPP

Summary

- Combined proton spectrometer data provide better precision
- LRG Inclusive Diffraction is measured with improved precision
- QCD factorization is confirmed by diffractive dijet measurements in DIS; Data described by NLO QCD calculations
- H1: suppression of diffractive dijet photoproduction
 ZEUS: no suppression; difference between measurements is not understood
- The cross section of p-diss. diffractive J/ψ production is measured precisely at small |t| for the first time at HERA.
- Photoproduction cross section for exclusive p⁰ production associated with leading neutron is measured for the first time at HERA.

Thank you for your attention!