Charm final states at HERA

Michel Sauter Ruprecht-Karls-Universität Heidelberg for the H1 and ZEUS Collaborations

ICHEP 2014

37th International Conference on High Energy Physics 2-9 July 2014, Valencia, Spain

Motivation to measure heavy flavour production

- Charm and Beauty quarks at HERA are mainly produced in Boson-Gluon-Fusion.
- Event kinematics:
 - Photon virtuality: $Q^2 = -q^2 = -(k-k')^2$
 - Inelasticity:
 - Bjorken x: x
- $y = (q \cdot p) / (k \cdot p)$ $x = Q^2 / (2 p \cdot q)$
 - Two kinematic regimes:
 - Photoproduction: $Q^2 \approx 0 \text{ GeV}^2$

 Deep Inelastic Scattering: Q² > 1 GeV² (scattered electron detected),

Motivation to measure heavy flavour production

• Heavy Flavour cross sections can be calculated via the <u>factorisation ansatz</u>:

$$\begin{array}{cccc} d\sigma = \sum & f_{j}^{B}(x,\,\mu_{f}) \otimes d\sigma_{_{ij \rightarrow \ kX}} \otimes D_{k}^{^{H}}\!(\mu_{f}) \\ & & & & & & \\ & & & & & & \\ \text{Parton density} & & & & & \\ \text{Fragmentation} \\ \text{global fits)} & & & & & \\ \end{array}$$

- Interpretation of heavy flavour measurements:
 - Use the pQCD calculations and constrain the gluon density of the proton.
 - Take the gluon density from elsewhere and test the consistency of the pQCD calculation.

QCD scheme:

- Massive scheme Fixed Flavour Number Scheme (FFNS):
 - c and b quarks generated dynamically via boson-gluon-fusion.
 - c and b quarks treated massive.
 - Expected to be valid for small scales $\mu^2 \approx m_{\rm hc}^2$

QCD predictions:

- QCD LO + Parton shower Monte Carlo generators:
 - Collinear factorisation, DGLAP evolution (PYTHIA).
 - k_{T} factorisation, CCFM evolution (CASCADE).
 - Used for data corrections and model comparisons.
- QCD NLO calculations:
 - Massive scheme, NLO(α_s^2):
 - HVQDIS

Used for comparisons and small phase space corrections.

D* combination in visible phase space in DIS

do/dQ² (pb/GeV²)

- Combination of most precise D* measurements from H1 and ZEUS within visible phase space.
- Minimal extrapolation factors to common phase space → minimal theory related uncertainties.
- Good agreement between measurements: χ^2 probability between 0.15 and 0.86.
- Uncorrelated systematics and larger statistics → improved experimental precision of typically 5%.

H1-prelim-13-171, ZEUS-prel-13-002

Michel Sauter

- Most precise D* measurement in DIS within visible phase-space.
- NLO QCD predictions describe data well; theory uncertainties are typically larger than data precision.

- Exploit low energy runs of HERA, with reduced proton energy.
- Look at ratio of visible
 D* cross section R_s
 from reduced CMS
 energy to D* cross
 sections from nominal
 CMS energy.

- Measured D* cross section increases with higher CMS energy.
- Behavior predicted by NLO QCD.

DESY-14-082, ZEUS Collaboration; to be published in JHEP

Inelastic J/ ψ and ψ ' in photoproduction

- Differential measurement of ψ' to J/ψ ratio.
- Differential J/ψ cross sections as a function of:

-
$$p_T^2$$

- Inelasticity z, $z = \frac{P \cdot p_{\psi}}{P \cdot q}$

• Theory comparisons to

2

- non-relativistic QCD, based on CS and CO model.
- k_{T} -factorisation + CS.

 \rightarrow radiation of hard gluon

 \rightarrow radiation of soft gluons

 $z < 0.9 \rightarrow$ no diffraction, high track multiplicity.

DESY-12-226, ZEUS Collaboration; JHEP 02 (2013) 071

Michel Sauter

Charm final states at HERA

Inelastic J/ ψ and ψ ' in photoproduction

- Differential J/ψ cross section compared to NRQCD:
- rough description by CS+CO predictions.

ψ' to J/ψ ratio agrees to LO CS prediction:

- Very high precision of the data, compared to the uncertainties of the NLO predictions.
- Prediction in general show a reasonable agreement.

Charm fragmentation fraction

Is the charm fragmentation fraction *f* universal?

Charm final states at HERA

5 MeV

Combinations

60000

ZEUS 372 pb⁻¹

130 < W < 300 GeV, Q² < 1 GeV

 $p_{\tau}(\Lambda_{c}^{+}) > 3.8 \text{ GeV}, |\eta(\Lambda_{c}^{+})| < 1.6$

Analysed channels:

 $D^+ \rightarrow K^- \pi^+ \pi^+$

Charm fragmentation fraction

Excited charm mesons D_1 and D_2^*

- Exploit large samples of "D-ground states" to reconstruct excited charm states D₁(2420)⁰, D^{*}₂(2460)⁰, D₁(2420)⁺, D^{*}₂(2460)⁺.
- Look at invariant mass distributions of
 - $M(D^{*+}\pi) \Rightarrow D_1^{0}, D_2^{*0}$
 - $M(D^+\pi) \Rightarrow D_2^{*0}$
 - $M(D^0\pi) \Rightarrow D_1^+, D_2^{*+}$
- Measurement of masses, widths, angular distributions and fragmentation fractions of excited charm states.

~90000 D*+

DESY-12-144, ZEUS Collaboration; Nuclear Phys. B 866 (2013) 229-254

Michel Sauter

Excited charm mesons D_1 and D^*_2

• <u>Neutral excited states:</u>

	HERA-II (this)	HERA-I	PDG
$M(D_1^0)$, MeV	$2423.1 \pm 1.5^{+0.4}_{-1.0}$	$2420.5 \pm 2.1 \pm 0.9$	2421.3 ± 0.6
$\Gamma(D_1^0)$, MeV	$38.8 \pm 5.0^{+1.9}_{-5.4}$	$53.2 \pm 7.2^{+3.3}_{-4.9}$	27.1 ± 2.7
$h(D_1^0)$	$7.8^{+6.7+4.6}_{-2.7-1.8}$	$5.9^{+3.0+2.4}_{-1.7-1.0}$	
$M(D_2^{*0})$, MeV	$2462.5\pm2.4^{+1.3}_{-1.1}$	$2469.1 \pm 3.7^{+1.2}_{-1.3}$	2462.6 ± 0.7
$\Gamma(D_2^{*0})$, MeV	$46.6\pm8.1^{+5.9}_{-3.8}$	43 fixed	49.0 ± 1.4
$h(D_2^{*0})$	-1 fixed	-1 fixed	

• Charged excited states:

	$\operatorname{Hera-II}(this)$	PDG
$M(D_1^+)$, MeV	$2421.9 \pm 4.7^{+3.4}_{-1.2}$	2423.4 ± 3.1
$\Gamma(D_1^+)$, MeV	25 fixed	25 ± 6
$h(D_{1}^{+})$	3 fixed	
$M(D_2^{*+})$, MeV	$2460.6 \pm 4.4^{+3.6}_{-0.8}$	2464.4 ± 1.9
$\Gamma(D_2^{*+})$, MeV	37 fixed	37 ± 6
$h(D_2^{*+})$	-1 fixed	

- Accurate measurement of D₁ and D₂^{*} spectroscopy and fragmentation (not shown) parameters.
- All values consistent with PDG values.

Combinations per 8 MeV

Combinations per 8 MeV

- H1 and ZEUS combined D* cross sections in DIS:
 - High data precision in visible phase space (\rightarrow negligible theory uncertainty).
 - Test pQCD at various variables.
- D* cross sections rises with CMS energy, as predicted by pQCD.
- New precise measurement of inelastic J/ψ production.
- Confirmation of charm fragmentation universality.
- Spectroscopy and fragmentation parameters of excited charm states.

- "Combination of D* Differential Cross Section Measurements in Deep-Inelastic ep Scattering at HERA" H1-prelim-13-171, ZEUS-prel-13-002
- "Measurement of D* photoproduction at three different centre-of-mass energies at HERA" DESY-14-082, ZEUS Collaboration; to be published in JHEP
- "Measurement of Inelastic J/ ψ and ψ ' photoproduction at HERA" DESY-12-226, ZEUS Collaboration; H. Abramowicz et al., JHEP 02 (2013) 071
- "Measurement of Charm Fragmentation Fractions in Photoproduction at HERA" DESY-13-106, ZEUS Collaboration; H. Abramowicz et al., JHEP 09 (2013) 058
- "Production of the excited charm mesons D₁ and D^{*}₂ at HERA"
 DESY-12-144, ZEUS Collaboration; H. Abramowicz et al., Nuclear Phys. B 866 (2013) 229-254

Backup

The HERA ep collider (1992 - 2007) at DESY in Hamburg

- ep collider:
- e^{\pm} energy: 27.6 GeV
- p energy: 920 GeV
- Centre of mass energy: 319 GeV
- 2 collider experiments: H1 and ZEUS
- Integrated luminosity: ~0.5 fb⁻¹ (per experiment)

17

ZEUS

Tagging methods for heavy flavours at HERA

- Rates at HERA behaved like $\sigma(b) : \sigma(c) : \sigma(uds) \approx 1 : 50 : 2000$
- Charm and beauty enrichment is possible with:
 - 1) Full reconstruction
 - Only possible for charm at HERA, eg. $D^* \rightarrow K\pi\pi$.
 - 2) Lepton tagging: Use semileptonic b/c decay channels
 - > look for μ or e , high BR(c,b \rightarrow lepton + anything)
 - 3) p_T^{rel} tagging : b/c quark have large masses
 - look for decay leptons with a high transverse momentum w.r.t the b quark flight direction.
 - 4) Lifetime tagging: b/c quark have long lifetimes:
 - look for displaced vertices.
 - > look for tracks with large impact parameters δ .
 - 5) Secondary vertex mass tagging: long lifetime and large masses
 - look for high secondary vertex masses.

