HERAPDF fits

g

K. Wichmann for H1 and ZEUS Collaborations

Inclusive measurements from HERA are core of every parton density extraction

Deep Inelastic Scattering @ HERA

- Fix pQCD & PDFs ! Test Electroweak
 - Fix Electroweak ! Test pQCD & PDFs One example for each

Fix Electroweak & pQCD ! Determine PDFs

Focus of this talk

QCD scaling and EW effects beautifully seen

4

1 fb⁻¹ HERA data - exclusively! - used as input to global QCD fit HERAPDF2.0 (prel.)

• Parton densities parametrised @ $Q^2 = 1.9 \text{ GeV}^2$

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$

$$xg(x), xu_{v}(x), xd_{v}(x), x\bar{U}(x), x\bar{D}(x)$$

DGLAP evolution

•15 parameters determined in paramerisation scan

• Heavy quarks from Roberts-Thorne Variable Flavor Number Scheme

Where does the information on parton distributions come from?

By a small sample we may judge of the whole piece Miguel de Cervantes, "Don Quixote"

Neutral Current

Proton structure functions

 $F_2 = x \sum e_q^2 [q(x) + \bar{q}(x)]$

DominantSensitive to quarks

 $xF_3 = x \sum 2e_q a_q [q(x) - \bar{q}(x)]$

Sensitive to valence distributions
Essential at high Q²

 $F_L \sim \alpha_s \times g$

- Sensitive to gluon
- Essential at high y
- NC and CC available for e^+ and e^-
- NCe⁺p available for \sqrt{s} of 225, 251, 300 and 318 GeV

ZEUS

HERAPDF2.0 (prel.)

H1 and ZEUS preliminary

H1prelim-14-042

Reasonable description of NC, CC and low energy data for NLO and NNLO

ICHEP14, HERAPDF parton densities

Comparisons are odious

Miguel de Cervantes, "Don Quixote"

Comparison to HERAPDF1.0 and HERAPDF1.5

X

HERAPDF2.0 (prel.) versus other VFNS PDF sets

H1 and ZEUS preliminary

 Difference for valence guarks

HERAPDF - the only group to get d valence from proton in CCe+p and not from neutron by assuming that u in neutron = d in proton

Studies of Q^2_{min} cut

- Dependence of chi2/dof on Q²_{min} cut
 - Drop of chi2 with Q²_{min} cut
 - Saturation around 10 GeV^2
- Significant improvement of NLO compared to LO
- Marginal to no improvement of NNLO compared to NLO
- NLO behavior similar in HERAI and HERAI+II

- Treating F_L to order α_s the same order as F_2 yields better χ^2 than treating F_L to order α_s^2 the same number of loops (1 loop)
- Almost independent of heavy flavor scheme

HERAPDF2.0 with Q_{min}^2 = 3.5 GeV² and 10 GeV²

- At low-x gluon and sea
 - greater uncertainty for $Q^2_{min} = 10 \text{ GeV}^2$ & small shift of shape
- At large x gluon, sea and valence similar

HERAPDF1.5LO (prel.)

$\overline{\mathbf{x}}$ Wichmann, 04.07.14 ICHEP14, HERAPDF fits of parton densities

HERAPDF1.5LO (prel.)

- Parton densities @LO are essential for proper simulation of parton showers and underlying event properties in LO+PS Monte Carlo event generators
- HERAPDF1.5 LO set based on HERAPDF1.5 NLO PDF settings
- Includes experimental uncertainties

Available in LHAPDF library

Example use of HERAPDF1.5LO in tuning

- HERA provides a clean determination of proton's PDFs based solely on ep collider data
 - HERAPDF1.5LO (prel.) with experimental uncertainties
 - HERAPDF2.0 (prel.) at NLO and NNLO with full uncertainties
- New preliminary combined HERA I+II+low energy measurements improves precision of PDFs
- Q² dependence of fit observed for HERAPDF2.0 (prel.) and two sets, Q²>3.5 GeV² and Q²>10 GeV², provided

"I do not insist," answered Don Quixote, "that this is a full adventure, but it is the beginning of one, for this is the way adventures begin."

HERAPDF2.0 (prel.) uncertainties

Parametrisation uncertainties:

- Starting scale Q₀² variation.

Experimental uncertainties:

- Hessian method used: full second-derivative matrix calculated

- Conventional $\Delta \chi^2 = 1 => 68\%$ CL

Model uncertainties:

Variation	Standard Value	Lower Limit	Upper Limit
f_s	0.4	0.3	0.5
M _c ^{opt} (NLO) [GeV]	1.47	1.41	1.53
M_c^{opt} (NNLO) [GeV]	1.44	1.38	1.50
M_b [GeV]	4.75	4.5	5.0
Q_{min}^2 [GeV ²]	10.0	7.5	12.5
Q^2_{min} [GeV ²]	3.5	2.5	5.0
Q_0^2 [GeV ²]	1.9	1.6	2.2

HERAPDF2.0 (prel.)

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1 + D_{u_v} x + E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} \left(1 + D_{\bar{U}} x\right), \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

Data for parton distributions: preLHC

