New Results on Vector Meson Production at HERA

Grzegorz Grzelak on behalf of the H1 and ZEUS Collaborations

> Faculty of Physics University of Warsaw

LOW-X MEETING YUKAWA INSTITUTE, KYOTO, JAPAN, June 17-21 2014.

Introduction: Vector Meson Production in Exclusive Diffraction in ep Scattering

New Results on Vector Mesons Production at HERA

- ZEUS: cross section ratio $\psi(2S)/J/\psi(1S)$ in DIS
- H1: Exclusive ρ^0 mesons with leading neutron in PHP

Light Scattering in Fraunhofer approximation (wavelength $\lambda \sim 1/k \ll R$)

- $|t| = 4k^2 sin^2(\theta/2)$
- $d\sigma/dt \sim e^{-b|t|}$ (first diffractive peak approximated from Bessel function)
- $b = (R/2)^2 \rightarrow$ transverse size of the target
- in the presented studies: target \equiv proton and photon energy $\gg 1$ GeV

The HERA Accelerator, 1992 – 2007, DESY, Hamburg

World's first and only $e^{\pm}p$ collider, $E_e = 27.5$ GeV, $E_p = 920$ GeV (820, 575, 460 GeV)

Total luminosity: $\int \mathcal{L} \sim 500 \ pb^{-1}$ collected per experiment

G. Grzelak (University of Warsaw)

Kinematics of the exclusive process The proton stays intact ! Kinematics: M²_V, Q², W, |t|

 M_V^2 - vector meson mass squared

 Q^2 (= $-q^2 = -(k - k')^2$) - the photon virtuality (emitted by the incoming electron):

- $Q^2 \approx 0$ GeV² PHP (*Photoproduction*)
- larger Q² for DIS (*Deep Inelastic Scattering*)

W - invariant mass of the γp system Process sensitive to the **gluon density** in the proton

|t| - 4-momentum transfer at the proton vertex $t = (P - P')^2$

pQCD: M_V^2 and Q^2 - set the scale at which the W and |t| are probed

- ZEUS: cross section ratio $\psi(2S)/J/\psi(1S)$ in DIS
- H1: Exclusive ρ^0 mesons with leading neutron in PHP

ZEUS: cross section ratio $\psi(2S)/J/\psi(1S)$ in DIS

- $J/\psi(1S)$ and $\psi(2S)$ have distinctive wave functions
- $\psi(2S)$ has a node at \approx 0.4 fm
- $\langle r_{\psi(2S)}^2 \rangle \approx 2 \langle r_{J/\psi(1S)}^2 \rangle$
- pQCD models predict $R \sim 0.17$ in PHP and rise of R with Q^2 in DIS

- Analyzed channels
 - $\psi(2S) \rightarrow J/\psi + \pi^+\pi^-; J/\psi \rightarrow \mu^+\mu^-$
 - $\psi(2S) \rightarrow \mu^+ \mu^-$
 - $J/\psi(1S) \rightarrow \mu^+\mu^-$
- HERA II DATA $\mathcal{L} = 354 \text{ pb}^{-1}$ (2003 2007)
- MC Samples
 - Signal: DIFFVM for exclusive VM production (J/psi and ψ')
 - Background: GRAPE for non resonant muon pair production (Bethe-Heitler process)
- Event selection
 - scattered electron $E_{e'} > 10$ GeVin CAL
 - 2 (4 for $\psi(2S)$ 4-prongs decay) non-electron tracks from primary vertex, net charge = 0
 - two tracks identified as muons (CAL, F/B/R/MUO, BAC)
 - no other deposits not matched to tracks (above CAL noise)
- Kinematic range:
 - $30 \le W \le 210$ GeV
 - 5 $\leq Q^2 \leq$ 70 GeV^2
 - $|t| \leq 1 \text{ GeV}^2$

Selection specific for $\psi(2S) \rightarrow \mu^+ \mu^- \pi^+ \pi^-$ channel

• ΔM vs. $M_{\mu^+\mu^-}$ $\Delta M = M(\mu^+\mu^-\pi^+\pi^-) - M(\mu^+\mu^-)$ cascade decay of $\psi(2S)$

• $0.5 < \Delta M < 0.7$ GeV $3.02 < M_{\mu^+\mu^-} < 3.17$ GeV

 M(μ⁺μ⁻π⁺π⁻) after cleanup very clean signature (≤ 3 background events)

Control plots for $J/\psi \rightarrow \mu^+\mu^-$ channel

LOW-X 2014 10 / 31

Control plots for $\psi(2S) \rightarrow \mu^+ \mu^-$ channel

LOW-X 2014 11 / 31

Control plots for $\psi(2S) \rightarrow \mu^+ \mu^- \pi^+ \pi^-$ channel

Cross section ratio $R = \frac{\sigma(\psi(2S))}{\sigma(J/\psi(1S))}$ for full kinematic range

For $30 \le W \le \overline{210 \text{ GeV}}$, $5 \le Q^2 \le 70 \text{ GeV}^2$, $|t| \le 1 \text{ GeV}^2$

$\psi(2S)$ decay mode	$R = rac{\sigma(\psi(2S))}{\sigma(J/\psi(1S))}$
$ ightarrow J/\psi (ightarrow \mu^+ \mu^-) \pi^+ \pi^-$	$0.29 \pm 0.04^{+0.02}_{-0.01}$
$ ightarrow \mu^+\mu^-$	$0.25\pm0.05^{+0.04}_{-0.02}$
combined	$0.28\pm0.03^{+0.02}_{-0.01}$

ZEUS Preliminary

both channels provide consistent results

•
$$R_{\psi(2S)\to J/\psi\pi^+\pi^-} = \frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi(1S)}} = \frac{N_{\psi(2S)}}{N_{J/\psi(1S)}} \cdot \frac{Acc_{J/\psi(1S)\to\mu^+\mu^-}}{Acc_{\psi(2S)\to J/\psi\pi^+\pi^-}} \cdot \frac{1}{BR_{\psi(2S)\to J/\psi\pi^+\pi^-}}$$

• $R_{\psi(2S)\to\mu^+\mu^-} = \frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi(1S)}} = \frac{N_{\psi(2S)}}{N_{J/\psi(1S)}} \cdot \frac{Acc_{J/\psi(1S)\to\mu^+\mu^-}}{Acc_{\psi(2S)\to\mu^+\mu^-}} \cdot \frac{BR_{J/\psi(1S)\to\mu^+\mu^-}}{BR_{\psi(2S)\to\mu^+\mu^-}}$
• $Acc_i = \frac{N_i^{reco}}{N_i^{true}}$

ZEUS 0.7 σ(ψ(2S)) σ(J/ψ(1S)) 0.6 ZEUS (prel.) 354 pb⁻¹ 0.5 R independent of W ۲ 0.4 0.3 0.2 0.1 160 200 40 60 80 100 120 140 180 W (GeV) <u>σ(ψ(2S)) [μμππ]</u> σ(ψ(2S)) [μμ] 3.5 ZEUS (prel.) 354 pb⁻¹ 3 2.5 $\frac{\sigma(\psi(2S)\to\mu^+\mu^-\pi^+\pi^-)}{\sigma(\psi(2S)\to\mu^+\mu^-)}$ 2 1.5 1 0.5 100 120 140 160 180 200 40 60 80 W (GeV)

Ratio $R = \frac{\sigma(\psi(2S))}{\sigma(J/\psi(1S))}$ vs. W

ZEUS 0.7 σ(ψ(2S)) σ(J/ψ(1S)) 0.6 ZEUS (prel.) 354 pb⁻¹ 0.5 R independent of |t| 0.4 0.3 0.2 0.1 0.2 0.4 0.6 0.8 0 1 |t| (GeV²) <u>σ(ψ(2S)) [μμππ]</u> σ(ψ(2S)) [μμ] 3.5 ZEUS (prel.) 354 pb⁻¹ 3 2.5 $\frac{\sigma(\psi(2S)\to\mu^+\mu^-\pi^+\pi^-)}{\sigma(\psi(2S)\to\mu^+\mu^-)}$ 2 1.5 1 0.5 0.2 0.4 0.6 0.8 0 1 |t| (GeV²)

Ratio $R = rac{\sigma(\psi(2S))}{\sigma(J/\psi(1S))}$ vs. |t|

ZEUS to H1 comparison

- cross check: ZEUS data analyzed in Q² bins used by H1: [EPJ C10 (1999) 373.] (5 - 12) GeV² and (12 - 80) GeV²
- 40 < W < 180 GeV and $1 < Q^2 < 80$ GeV²

- both measurements are in agreement
- improved accuracy due to the increased statistic of HERA II data

• H1: Exclusive ρ^0 mesons with leading neutron in PHP

H1: Exclusive ρ^0 mesons with leading neutron in PHP

- First observation of exclusive VM photoproduction on (virtual) pion $\gamma \pi^+ \rightarrow VM + \pi^+$
 - unique opportunity at HERA (γ , π^+ beams existed before, but not the target)
 - extends the landscape of Vector Meson production at HERA

• experimental challenge

- trigger: tagged PHP too large *W* to register the VM; untagged PHP very large rate, requires prescaling
- limited acceptance for (very) forward π and neutron ($\eta_{LAB} > 6$)

advantages of H1 during HERA-II run

- improved Forward Neutron Calorimeter (FNC) (identifies and measures *n* and γ/π^0)
- efficient Fast Track Trigger (FTT) allows to collect untagged soft PHP events

•
$$\gamma^* + p \to \rho^0 \pi^+ n$$
, $\rho^0 \to \pi^+ \pi^-$

Key observables

• $x_L = E_n/E_p$ (or $x_{\pi} = 1 - x_L$, distribution: $\sim f_{\pi/p}(x_L)$

- *W* dependence: $\sim W^{\delta}$, nature of exchanged object
- *t*-slope, $dN/d|t| \sim exp(-b|t|)$, $b \sim R^2$, size of the interaction region

Kinematics

- Photoproduction: $Q^2 < 2~\text{GeV}^2,~\langle Q^2 \rangle = 0.05~\text{GeV}^2$
- Low p_l : |t| < 1 GeV², $\langle |t| \rangle = 0.20$ GeV², $t = (P_{\gamma} - P_{\rho^0})^2$ (at top vertex)
- small mass: 0.3 $< m_{\pi\pi} <$ 1.5 GeV
- track acceptance in Central Tracker:

 $\begin{array}{l} 20 < W_{\gamma p} < 100 \,\, \text{GeV}, \, \langle W_{\gamma p} \rangle = 48 \,\, \text{GeV} \\ W_{\gamma p} = \sqrt{2(E - p_z)_{\rho} E_p}, \, W_{\gamma \pi} = W_{\gamma p} \sqrt{1 - x_L} \end{array}$

- Forward neutron: $E_n > 120$ GeV, $\theta_n < 0.75$ mrad
- No hard scale present: Regge framework is most adequate
- Diffractive BG has irreducible component: $M_Y = N^*
 ightarrow n \pi^+$

 ρ^0 meson shape

ρ^0 photoproduction: control distributions

Exclusive photoproduction of ρ^0 with Forward Neutrons

Data points are shown with stat. errors only; green band represents estimated uncertainty on the p.diss BG fraction

Classes of π -fluxes restricted by comparing the x_L distribution

Total Cross Sections: H1 Preliminary

•
$$\sigma_{\gamma p} = rac{\sigma_{ep}}{\int f_{\gamma/e}(y,Q^2) dy dQ^2} = rac{N_{
m DATA} - N_{
m BG}}{\mathcal{L}(A \cdot \epsilon) \mathcal{F}} \cdot C_p$$

- N_{BG} proton dissociation background from MC
- *L* integrated luminosity
- A · e acceptance and efficiency corrections
- \mathcal{F} photon flux integrated over 20 < W < 100 GeV, Q^2 < 2 GeV²
- C_p correction due to the extrapolation to the full ρ^0 mass range

For $0.35 < x_L < 0.95$, 20 < W < 100 GeV, $\theta_n < 0.75$ mrad $\sigma(\gamma p \rightarrow \rho^0 n(\pi^+)) = (280 \pm 6_{\text{stat}} \pm 46_{\text{syst}})$ nb

•
$$\sigma_{\gamma\pi}(\langle W_{\gamma\pi} \rangle) = rac{\sigma_{\gamma\mu}}{\int f_{\pi^+/\mu}(x_L,t)dx_Ldt}$$

For $\langle W_{\gamma\pi} \rangle =$ 22 GeV

$$\sigma_{\it el}(\gamma\pi^+ o
ho^0\pi^+) = (2.03 \pm 0.34_{
m exp} \pm 0.51_{
m model}) \ \mu {
m b}$$

taking interpolated value of $\sigma(\gamma p \rightarrow \rho^0 p) = 9.5 \ \mu b$ at corresponding energy

 $r_{\rm el} = \sigma_{\gamma\pi}^{el} / \sigma_{\gamma\rho}^{el} = 0.21 \pm 0.06 \text{ (cf. } r_{\rm tot} = \sigma_{\gamma\pi}^{tot} / \sigma_{\gamma\rho}^{tot} = 0.32 \pm 0.03 \text{ [ZEUS, Nucl. Phys. B637 (2002) 3.])}$

W Dependence of the Total γp and $\gamma \pi$ Cross Sections

inner error bars: statistical uncertainty outer error bars: $\sqrt{stat^2+syst^2}$

inner error bars: total experimental uncertainty outer error bars: $\sqrt{exp^2+model^2}$

Regge motivated power law fit W^{δ} yields $\delta < 0$ in qualitative agreement with DPP and in contrast to MC, $\delta_{MC} = 0.08 \pm 0.02$ as expected from purely IP exchange

Holtmann flux is used for the central values, conservative model uncertainty $\sim 25\%$

Differential cross section in $p_{t,\rho}^2$

- In geometric picture: $\langle r^2 \rangle = 2b_1 \cdot (\hbar c)^2 \simeq 2 \text{ fm}^2 \Rightarrow (1.6R_p)^2 \Rightarrow \text{ultra-peripheral process}$
- DPP model: low mass $\pi^+ n$ state \rightarrow large slope, high mass \rightarrow small (less steep) slope

- Ratio of $\frac{\sigma(\psi(2S))}{\sigma(J/\psi(1S))}$ using HERA II data was measured in the kinematic range: $30 \le W \le 210$ GeV, $5 \le Q^2 \le 70$ GeV², $|t| \le 1$ GeV²
- The ratio increases with Q^2 and is constant as a function of W and |t|
- ZEUS measurement will be extended to 2 < W < 5 GeV² using HERA I data
- Theoretical calculations of the ratio $\frac{\sigma(\psi(2S))}{\sigma(J/\psi(1S))}$ are welcome :).
- Cross section for the exclusive PHP of ρ^0 mesons associated with leading neutron has been measured for the first time at HERA
- Differential cross sections for the reaction γp → ρ⁰nπ⁺ are compatible with model of Double Peripheral Process (DPP)
- The elastic photon-pion cross section, $\sigma(\gamma \pi^+ \to \rho^0 \pi^+)$ was extracted in the One Pion Exchange (OPE) approximation

Thank You For Your Attention

BACKUP PLOTS FOLLOWS...

イヨトイヨ

H1: ρ^0 with leading neutron: Analysis Summary

- Data Sample: 2006-7 e^+ runs, $\sqrt{s} = 319$ GeV, $\int L = 1.16$ pb⁻¹, ~ 6600 events in final sample
- **Tracking**: two opposite charge tracks fitted to event vertex $|z_{vtx}| < 30$ cm, $p_t^{tr} > 0.2$ GeV, $20^\circ < \theta^{tr} < 160^\circ$ effective mass range $M_{\pi\pi} \in (0.6, 1.1)$ GeV, extrapolated for $\sigma(\rho^0)$ to (0.28, 1.5) GeV
- **FNC**: high energy neutron $E_n > 120$ GeV, within good acceptance $\theta_n < 0.75$ mrad BG fraction from x_L shape fit: $F_{bg} = 0.36 \pm 0.06$ (subtracted from the data)
- Exclusivity: no deposits above detector noise level except two pions from ρ⁰ decay and the leading neutron
- Monte Carlo modeling
 - Signal (Double Peripheral Process DPP): POMPYT × PYTHIA6 (π -flux × elastic $\gamma \pi \rightarrow \rho^0 \pi$)
 - Background: DIFFVM (elastic, p-diss, γ-diss, double diss)

・ロト ・ 同ト ・ ヨト

H1: OPE (One Pion Exchange) and pion fluxes

 $0.8 \\ 0.4 \\ 0 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 0.8 \\ 0.9 \\ X_1 \\ \leftarrow all$

Very many pion fluxes has been proposed...

Allowed t-range due to the FNC acceptance
 Allowed due to the FNC acceptance
 Allowed t-range due to

Typical examples of pion fluxes:

$$f_{\pi^+/\rho}(X_L, t) = \frac{1}{2\pi} \frac{g_{\rho\pi N}^2}{4\pi} (1 - X_L) \frac{-t}{(m_{\pi^-}^2 - t)^2} \exp[R_{\pi N}^2 \frac{m_{\pi^-}^2 t}{1 - X_L}] - \text{H. Holtmann at al., Nucl. Phys. A596 (1996) 631.}$$

$$f_{\pi^+/\rho}(X_L, t) = \frac{1}{2\pi} \frac{g_{\rho\pi N}^2}{4\pi} (1 - X_L)^{1-2\alpha'_{\pi}t} \frac{-t}{(m_{\pi^-}^2 - t)^2} \exp[R_{\pi}^2 (m_{\pi^-}^2 - t)] - \text{B. Kopeliovich at al., Z. Phys. C73 (1996) 125.}$$