Recent HERA results on proton structure

Aharon Levy, Tel Aviv University

On behalf of the H1 and ZEUS collaborations

Resolving Structure of Matter

HERA, e (27.5 GeV) p (920 GeV) collider to study the proton structure with a high resolving power. (~ 10⁻³ fm)

ep Scattering at HERA

DIS cross sections provide an access to parton distribution functions in proton:

Charged Currents

$$\frac{d^2\sigma_{NC}^{e^{\pm}p}}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[Y_+ \tilde{F}_2^{\pm} \mp Y_- x \tilde{F}_3^{\pm} - y^2 \tilde{F}_L^{\pm} \Big]$$

dominant contribution
important at high Q²
$$Y_{\pm} = 1 \pm (1-y)^2$$

sizable at high y
PDFs
LO: $F_2 \approx x \sum e^2_q (q + \bar{q})$ (in NLO ($\alpha_s g$) appears)
 $xF_3 \approx x \sum 2e_q^2 a_q(q - \bar{q})$

In LO e⁺/e⁻ charged current cross sections are sensitive to different quark densities:

$$e^+: \quad \tilde{\sigma}_{CC}^{e^+p} = x[\overline{u} + \overline{c}] + (1-y)^2 x[d+s]$$

$$\tilde{\sigma}_{CC}^{e^-p} = x[\mathbf{u}+c] + (1-y)^2 x[\overline{d}+\overline{s}]$$

Structure of talk

- 15 min talk → assume talk to experts
- Present only new recent results not shown so far
- Two new results: measurement of F_L by H1 and ZEUS H1: 1.5≤Q²≤800 GeV², ZEUS: 5≤Q²≤110 GeV² measurement of inclusive cross section at high x (ZEUS), 725≤Q²≤15500 GeV²

How to measure F_L?

Measure reduced cross sections $\sigma_r = F_2(x,Q^2) - (y^2/Y_+)F_L(x,Q^2)$ at same x, Q² but different y=Q²/xs \rightarrow vary s

- Change proton beam energy to change s
- Large lever arm in y²/Y₊
- Measurement at high y in LER
- Intercept of the fit gives F₂
- Negative slope gives F_L

as $y = 1 - E'_e / E_e (1 - \cos \theta) \rightarrow \text{high } y \text{ means low } E'_e$

control plots

25/03/2014

Aharon Levy, proton structure

linear fits

$H1 - F_2 - F_L$

$ZEUS - F_2 - F_L$

H1 – ZEUS, FL

H1 and ZEUS

25/03/2014

Conclusion F_L

Final measurements of F_L being published by HERA.

H1 covers large kinematic range in Q^2 , (1.5 – 800 GeV²); good tracking & EM calorimetry in the rear direction, go to smaller electron energies.

At low Q², very large uncertainties in the theoretical predictions.

High x - Motivation

The PDF's are poorly determined at high-x. Sizeable differences despite the fact that all fitters use the same parametrization $xq \propto (1-x)^{\eta}$. Is it possible to check this ?

HERA high x high Q²

Data/Theory NC e[±]p

Conclusions high x

Measured e[±]p NC DIS cross sections at Q²>725 GeV² up to x≅1.

Fine binning in x, extension of kinematic coverage up to x≅1 make data important input to fits constraining the PDFs in the valence-quark domain.

Backups

H1 and ZEUS

