

Structure Function Measurements and PDF Fits

Voica Radescu DESY

- Importance of understanding the Proton Structure
- Recent Structure Function measurements from HERA
- Complementarity from LHC
- Summary

Why do we still need to care about PDFs?

- Discovery of new exciting physics relies on precise knowledge of proton structure.
- Factorisation theorem:
 - Cross section can be calculated by convoluting short distance partonic reactions (calculable in pQCD) with Parton Distribution Functions (PDFs):
 - PDFs cannot be calculated in perturbative QCD, however they are process independent (universal) and their evolution with the scale is predicted by pQCD

$$\mu^2 \frac{\partial f(x,\mu^2)}{\partial \mu^2} = \int_z^1 \frac{dz}{z} \frac{\alpha_s}{2\pi} P(z) f\left(\frac{x}{z},\mu^2\right)$$

 LO - Dokshitzer; Gribov, Lipatov; Altarelli, Parisi, 1977
 NLO - Floratos, Ross, Sachrajda; Floratos, Lacaze, Kounnas, Gonzalez-Arroyo, Lopez, Yndurain; Curci, Furmanski Petronzio, 1981
 NNLO - Moch, Vermaseren, Vogt, 2004

- PDFs are one of the main theory uncertainties in Mw measurement
- precision of PDFs affect substantially theory predictions for SM and Beyond SM processes
- PDFs are one of main theory uncertainties in Higgs production.

Voica Radescu | 🙀 | PIC2014 | Bloomington

Current PDF sets in use

Tremendous efforts both in theory and data to better constrain PDFs:

- Data: targeted measurements, detailed information of sources of systematic uncertainties, addressing the importance of correlation information
- Theory: state of the art methods, advancement in computational powers that allowed for higher order calculations to be available

Active PDF groups:

August 2014	CT10(w)	MSTW2008	NNPDF2.3	ABM12	HERAPDF15
Fixed Target DIS	v	v	v	× -	×
HERA	v	v	v	×	v
Fixed Target DY		v	v	×	×
Tevatron W,Z	×	v	v	×	×
Tevatron jets	×	×	 V 	×	×
LHC data	×	×	 V 	×	×
Stat. treatment	Hessian $\Delta \chi^2 = 100$	Hessian $\Delta \chi^2$ dynamical	Monte Carlo	Hessian $\Delta \chi^2 = 1$	Hessian Δχ²=1
Parametrization	Pol. (26 pars)	Pol. (20 pars)	NN (259 pars)	Pol. (14 pars)	Pol. (14 pars)
HQ scheme	ΑСΟΤ-χ	TR'	FONLL	FFN	TR'
as	Varied	Fitted+varied	Varied	Fitted	Varied

Dedicated studies to address this difference, PDF4LHC, <u>http://arxiv.org/pdf/1405.1067.pdf</u>

The analyses differ in many areas:

- different treatment of heavy quarks
- inclusion of various data sets and account for possible tensions
- different alphas assumption

Proton Structure Measurements

Voica Radescu | 🙀 | PIC2014 | Bloomington

.

HERA ep collider (1992-2007) @ DESY

- HERA: unique lepton-proton collider
 - Operational:
 - 1992-2000 (HERA I)
 - 2003-2007 (HERA II)
 - Ep=460-920 GeV, Ee = 27.6GeV
- H1 and ZEUS collected 0.5/fb per experiment
- Rich Physics Program:
 - o proton structure, EW, QCD, diffraction, BSM searches,...

Kinematic variables

Two kinematic regimes:

- Photo-production (PHP): Q² <1 GeV²
- **Deep Inelastic Scattering (DIS)**: Q²> 1 GeV² 4 processes are available at HERA:

γ/Z

Introducing Structure Functions

• Differential cross sections as function of x and Q2 can be decomposed as:

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^2} = \frac{2\pi\alpha^2}{x} \left[\frac{1}{Q^2}\right]^2 \left[Y_+\tilde{F}_2 \mp Y_-x\tilde{F}_3 - y^2\tilde{F}_L\right]$$
$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^2} = \frac{G_F^2}{4\pi x} \left[\frac{M_W^2}{M_W^2 + Q^2}\right]^2 \left[Y_+\tilde{W}_2^{\pm} \mp Y_-x\tilde{W}_3^{\pm} - y^2\tilde{W}_L^{\pm}\right]$$

$$\tilde{F}_2 \propto \sum (xq_i + x\overline{q}_i)$$
$$x\tilde{F}_3 \propto \sum (xq_i - x\overline{q}_i)$$
$$\tilde{F}_L \propto \alpha_s \cdot xg(x,Q^2)$$

NC Measurements

- F2 dominates most of Q2 reach
- xF3 contributes in EW regime
- FL contributes only at highest y

CC Measurements

- W2 and xW3 contribute equally
- WL only at high y

New measurements from HERA

All inclusive individual DIS results from H1 and ZEUS are final and published!

HERAPDF2

Typically several experiments provide their data in a similar kinematic phase space:

$$0.045 < Q^2 < 50000 \text{ GeV}^2$$

 $6 \times 10^{-7} < x < 0.65$

- Best precision achieved 0 when data are combined
- Consistency check of the measurements in a model independent

	Data Set		x G	rid	Q^2/Ge	V ² Grid	L	e^+/e^-	\sqrt{s}	
			from	to	from	to	pb^{-1}		GeV	
	HERA I $E_p = 820 \text{ GeV}$	V and $E_n =$	920 GeV data	sets						
	H1 syx-mb	95-00	0.000005	0.02	0.2	12	2.1	$e^+ p$	301, 319	
-	H1 low Q^2	96-00	0.0002	0.1	12	150	22	$e^+ n$	301 319	
S O	H1 NC	94-97	0.0032	0.65	150	30000	35.6	$e^{+}p$	301	
1 -		04.07	0.0032	0.05	200	15000	25.6	e^{p}	201	
		94-97	0.015	0.40	150	20000	16.4	e p	210	
	HINC UI CC	98-99	0.0032	0.65	150	15000	16.4	<i>e</i> _ <i>p</i>	319	
	HICC	98-99	0.013	0.40	300	15000	16.4	e p	319	
	HI NC HY	98-99	0.0013	0.01	100	800	16.4	e^-p	319	
	H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319	
	H1 CC	99-00	0.013	0.40	300	15000	65.2	e^+p	319	
	ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e^+p	300	
	ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300	
	ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300	D
inter and the second	ZEUS NC	96-97	0.00006	0.65	2.7	30000	30.0	e^+p	300	l 5
	ZEUS CC	94-97	0.015	0.42	280	17000	47.7	$e^+ p$	300	
	ZEUS NC	98-99	0.005	0.65	200	30000	15.9	$e^{-}p$	318	
	ZEUS CC	08-00	0.005	0.03	280	30000	16.4	$e^{-}p$	318	
	ZEUS NC	99-00	0.005	0.42	200	30000	63.2	$c^{+}p$	318	
1	ZEUSICC	00.00	0.005	0.05	200	17000	60.0	e^{p}	219	— ·
	ZEUSCC	99-00	0.008	0.42	200	17000	00.9	e p	516	· <u>→</u>
	HERA II $E_{\pi} = 920 \text{ Ge}$	V data sets								ıШ.
3	H1 NC	03_07	0.0008	0.65	60	30000	182	<i>e</i> ⁺ n	310	
	H1 CC	03-07	0.0008	0.05	300	15000	182	$e^{+}p$	319	
1	HI NC	03-07	0.000	0.40	500	50000	151 7	e p	210	
	HINC UI CC	02.07	0.0008	0.05	200	20000	151.7	e p	210	
	HICC 1 o ²	03-07	0.008	0.40	300	30000	151.7	<i>e p</i>	319	
	HINC med Q^2	03-07	0.0000986	0.005	8.5	90	97.6	e'p	319	
	H1 NC low Q^2	03-07	0.000029	0.00032	2.5	12	5.9	e^+p	319	<u></u>
8	ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e^+p	318	
1	ZEUS CC	06-07	0.0078	0.42	280	30000	132	e^+p	318	「ニー
	ZEUS NC	05-06	0.005	0.65	200	30000	169.9	e^-p	318	!!!
	ZEUS CC	04-06	0.015	0.65	280	30000	175	e^-p	318	
	ZEUS NC nominal	06-07	0.000092	0.008343	7	110	44.5	e^+p	318	
	ZEUS NC satellite	06-07	0.000071	0.008343	5	110	44.5	e^+p	318	I
	HERA II $E_p = 575$ Ge	eV data sets	•							m
	H1 NC high Q^2	07	0.00065	0.65	35	800	5.4	e^+p	252	
	H1 NC low Q^2	07	0.0000279	0.0148	1.5	90	5.9	e^+p	252	
	ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e^+p	251	
	ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	e^+p	251	_
	HERA II $E_p = 460 \text{Ge}$	V data sets								0
	H1 NC high Q^2	07	0.00081	0.65	35	800	11.8	e^+p	225	b d d
	H1 NC low Q^2	07	0.0000348	0.0148	1.5	90	12.2	e^+p	225	נס
	ZEUS NC nominal	07	0.000184	0.016686	7	110	13.9	e^+p	225	
	ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	e^+p	225	l im

Towards final HERA data combination

- All individual measurements from H1 and ZEUS are published:
 - 41 data sets: 2927 data points are combined to 1307 averaged measurements with 162 sources of correlated systematic uncertainties.
 - Consistent data sets: total $\chi^2/ndf = 1685/1620=1.04$.

QCD scaling and EW effects H1prelim-14-041 and ZEUS-prel-14-005

• EW effects clearly seen at high Q2:

QCD scaling violations nicely seen:

Charged Current Cross Section Measurements H1prelim-14-041 and ZEUS-prel-14-005

Charged Current: provides important flavour decomposition

Much more precise CC measurements after including new high Q² HERA II set!

Extraction of PDFs through QCD fits

Typical measurements sensitive to PDFs are precise, with statistical uncertainties < 10%, so they follow normal distribution which allows the use of chi square minimisation for PDF extraction.

Modern understanding of PDFs

Uncertainties of three types considered:

• Experimental:

- Hessian method used
- Consistent data sets \rightarrow use $\Delta \chi^2 = 1$

• Model:

variations of all assumed input parameters in the fit

Variation	Standard Value	Lower Limit	Upper Limit	
f_s	0.4	0.3	0.5	
M_c^{opt} (NLO) [GeV]	1.47	1.41	1.53	
M_c^{opt} (NNLO) [GeV]	1.44	1.38	1.50	
M_b [GeV]	4.75	4.5	5.0	
Q_{min}^2 [GeV ²]	10.0	7.5	12.5	
Q_{min}^2 [GeV ²]	3.5	2.5	5.0	
Q_0^2 [GeV ²]	1.9	1.6	2.2	

• Parametrisation:

- An envelope formed from PDF fits using variants of parametrisation form (extra parameter added)
- Q₀² variation dominant parametrisation uncertainty

HERAPDF2.0 and Q2 cut dependence

The Q² cut dependence on the fit is already included in the model variation for the HERAPDF sets, however usually we look at small range in cuts when assessing an uncertainty to Q²_{min} choice.

• Look at larger range and effect on χ^2/ndf

- χ2/ndf = 1385 / 1130 at NLO
- χ2/ndf = 1414 / 1130 at NNLO
- For Q2min = 10 GeV2
 x2/ndf = 1156 / 1001 at NLO
 x2/ndf = 1150 / 1001 at NNLO
- χ^2 appears to saturate for Q2min = 10 GeV2
- Similar behaviour observed for HERA-I data
 - Not so clear due to lower high Q2 precision for HERA-I Q2 min = 3.5 GeV2
 - χ2/ndf = 637 / 656 at NLO

HERAPDF2.0 and Q2 cut dependence

The Q2 cut dependence on the fit is already included in the model variation for the HERAPDF sets, however usually we look at small range in cuts when assessing an uncertainty to Q2_{min} choice.

- heavy flavour scheme dependence

low Q2/low x remains an interesting region!

HERAPDF2.0 and Q2 cut dependence

The Q2 cut dependence on the fit is already included in the model variation for the HERAPDF sets, however usually we look at small range in cuts when assessing an uncertainty to Q²_{min} choice.

PDFs with Q2 cut min @ 3.5 GeV2 and @10 GeV2 are shown

uncertainties are larger for Q2cut=10 GeV2 (more data is cut away) and impact mostly gluon PDF

Longitudinal Structure Function

quarks

radiating a gluon

aluons

splitting into guarks

Longitudinal structure function FL is a pure QCD effect: $F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left| \frac{16}{3} F_2 \right| + 8 \sum_{q=1}^{\infty} e_q^2 (1 - \frac{x}{z}) zg(z)$

--> an independent way to probe sensitivity to gluon

Direct measurement of FL at HERA required differential cross sections at same x and Q^2 but different y —> different beam energies: Ep= 460, 575, 920 GeV

Heavy Flavour Production at HERA

- Heavy Flavour (HF) production: multi-hard scales pose a challenge for pQCD
 m_c, m_b, p_T, Q² —> several calculations (schemes) exist
 - Zero-Mass Variable Flavour Number Scheme (ZMVFNS) massless scheme
 - Fixed Flavour Number Scheme (FFNS) massive scheme
 - General-Mass Variable Flavour Number Scheme (GM-VFNS) matched scheme
- Main process of heavy quark production at HERA is Boson Gluon Fusion
- Measurements of heavy quarks:
 - are sensitive to the gluon PDF
 - are sensitive to the masses of the heavy quarks
 - are sensitive to the fragmentation process of heavy flavour hardons
- Measurements allow for tests of pQCD:

F2 charm Structure Function EPJC 73 (2013) 2311

- Rates at HERA in DIS regime $\sigma(b) : \sigma(c) \approx O(1\%) : O(20\%)$ of σ_{TOT}
- Charm data combination is performed at charm cross sections level:
 - they are obtained from xsec in visible phase space and extrapolated to full space

New Measurement of Charm Mass Running

H1-prelim-14-071 ZEUS-prel-14-006 and S. Moch

The running of the charm mass in the MS scheme is measured for the first time from the same HERA combined charm data:

- Extract m_c(m_c) in 6 separate kinematic regions
- Translate back to $m_c(\mu)$ [with $\mu = \sqrt{Q^2 + 4m_c^2}$] using OpenQCDrad [S.Alekhin's code].

Running beauty mass $m_b(m_b)$ from F2 beauty

DESY-14-083 arXiv:1405.6915

The value of the running beauty mass is obtained in a similar manner as for m_c(m_c):
 chi2 scan method from QCD fits in FFN scheme to the combined HERA I inclusive data + beauty measurements, beauty-quark mass is defined in the MS scheme.

Voica Radescu | 🙀 | PIC2014 | Bloomington

Structure Functions at high x

- PDF precision at high x is crucial for new physics frontiers. \bigcirc
- JLAB has an intense program on polarised and unpolarised stree 4 \bigcirc functions.
 - better handle of higher twist effects, nuclear medium corrections
 - Measurements of the neutron structure proton

• provides handle of d/u at high x:
$$\frac{F_2^n}{F_2^p} = \frac{u+u+4(d+d)+s+s}{4(u+u)+d+d+s+s} \implies \frac{d}{u} \approx \frac{4F_{2n}/F_{2p}-1}{4-F_{2n}/F_{2p}}$$

at BONUS12: Measurements that emulate a quasi-free neutron target to measure F2n ٠

• MARATHON: use mirror nuclei of 3H and 3He to study nuclear effect dependence

What can LHC do for PDFs?

LHC measurements from RUN1

Successful run in 2010 - 2012 at the LHC confirmed and tested SM

Flavour decomposition at LHC (EW bosons)

Additional constraints on PDFs come from DY and jet data at the LHC $x_1 = \frac{M}{\sqrt{s}}e^{+y}$ $x_2 = \frac{M}{\sqrt{s}}e^{-y}$ probe a bi-linear combination of quarks $\sim 0.29(u\bar{u} + c\bar{c}) + 0.37(d\bar{d} + s\bar{s} + b\bar{b})$ $\sim 0.95(u\bar{d} + c\bar{s}) + 0.05(u\bar{s} + c\bar{d})$ W^+ Z^{-} $\sim 0.44(u\bar{u} + c\bar{c}) + 0.11(d\bar{d} + s\bar{s} + b\bar{b})$ $W^ \sim 0.95(d\bar{u} + s\bar{c}) + 0.05(d\bar{c} + s\bar{u})$ $\Phi(y)$ $\Phi(y)$ $\Phi(y)$ $\Phi(y)$ W^+ dđ dđ υū — sē — dē uđ CS CՇ — ss 1.5 dī SS 1.5 นธิ сđ bb bb 1 1 0.5 0.5 0.5 0.5 0⊾ -5 0└ -5 0∟ -5 0<u></u>_5 5 V 0 0 5 0 5 0

Measurements of W, Z production differentially in y_Z and η_ℓ provide information on light sea decomposition

v

5

v

W charge asymmetry

- The interplay between the flavour asymmetries can be enhanced via ratio measurements:
 - W-asymmetry measurement
 - sensitive to uv, dv

$$\mathcal{A}^l_{\mathrm{W}} = rac{d\sigma_{W^+}/d\eta_{l^+} - d\sigma_{W^-}/d\eta_{l^-}}{d\sigma_{W^+}/d\eta_{l^+} + d\sigma_{W^-}/d\eta_{l^-}} ~~~ \mathcal{A}_{\mathrm{W}} pprox rac{u_v - d_v}{u+d}$$

- CMS measures directly the electron asymmetry data from 2011
- ATLAS differential measurements of W⁺ and W⁻ (combined muon and electron) based on 2010 data translated into charge asymmetry AI:
 - proper treatment of correlations are accounted for.
- LHCb extends the measurement to forward region
 Selection criteria are optimized for each experiment—> a challenge for data combination

W charge asymmetry

- Ine interplay between the flavour asymmetries can be enhanced via ratio measurements:
 - W-asymmetry measurement
 - sensitive to uv, dv

$$\mathcal{A}_{\mathrm{W}}^l = rac{d\sigma_{W^+}/d\eta_{l^+} - d\sigma_{W^-}/d\eta_{l^-}}{d\sigma_{W^+}/d\eta_{l^+} + d\sigma_{W^-}/d\eta_{l^-}} ~~~ \mathcal{A}_{\mathrm{W}} pprox rac{u_v - d_v}{u+d}$$

The largest effect is on the $u_{valance}$ and $d_{valance}$ PDFs (0.001 < x < 0.1).

Strange quark from W, Z measurements at LHC

- Strange quark is not so well constrained:
 - Neutrino dimuon data provides constraints:
 - prefers rather strongly suppressed strange
 - nuclear target
- in 2010, at LHC the EW boson data was used to constrain strange quark through a QCD fit analysis

$$xs(x) ~=~ A_{ar{s}} x^{B_s} (1-x)^{C_s}$$

- Impact comes from Z, W+, W- help constrain normalisation
- a rather enhanced strange distribution is found —>

Since then, new measurements and QCD analyses were performed:

- W+charm from ATLAS and CMS
- QCD fits to W asymmetry + W+charm data @ CMS
- ongoing efforts to combine the measurements

W+c sensitivity to strange

- W + charm data is directly sensitive to the strange quark density
- Both ATLAS and CMS have performed dedicated measurements:
 - Measure fully reconstructed D* mesons or soft leptons within a jet
 - ATLAS @ particle level [arXiv:1402.6263v1]

Impact of LHC data on PDFs

 $xg(x,Q^2)$

NNPDF3.0

 Abundant LHC data with possible novel constraints on PDFs are investigated:

Future prospects for better PDFs?

Future Circular Collider project: ee, eh, hh (100 TeV proton)

EIC project (JLAB, Brookhaven)

Summary

Many Thanks!

PDFs are very important as they still limit our knowledge of cross sections whether SM or BSM.

- HERA has finalised its separate measurements relevant to PDFs and ongoing efforts on combining final measurements to reach its ultimate precision:
 - PDFs, mc, mb, alphas …
- JLAB has a dedicated program on improving PDFs at high x
- Standard Model LHC measurements can themselves contribute to PDF discrimination and PDF improvement:

... Many more valuable measurements are already available, but not covered in this talk ...

- More precision measurements from LHC to come from Run I and in future from Run 2
- Intense activity of PDF groups to include constraining information in new releases
- Future Facilities to further push our limits are being considered ...

Extra Material

not necessarily useful

QCD Settings for HERAPDF2.0

The QCD settings are optimised for HERA measurements of proton structure functions: PDFs are parametrised at the starting scale $Q_0^2 = 1.9$ GeV² as follows:

 $xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B'_{g}}(1-x)^{C'_{g}},$ $xu_{v}(x) = A_{u_{v}}x^{B_{u_{v}}}(1-x)^{C_{u_{v}}}\left(1+D_{u_{v}}x+E_{u_{v}}x^{2}\right),$ $xd_{v}(x) = A_{d_{v}}x^{B_{d_{v}}}(1-x)^{C_{d_{v}}},$ $x\bar{U}(x) = A_{\bar{U}}x^{\bar{B}_{\bar{U}}}(1-x)^{C_{\bar{U}}}(1+D_{\bar{U}}x),$ $x\bar{D}(x) = A_{\bar{D}}x^{B_{\bar{D}}}(1-x)^{C_{\bar{D}}}.$ fixed or constrained by sum-rules

fixed or constrained by sum-rules parameters set equal but free NC structure functions

$$F_{2} = \frac{4}{9} \left(xU + x\bar{U} \right) + \frac{1}{9} \left(xD + x\bar{D} \right)$$
$$xF_{3} \sim xu_{v} + xd_{v}$$

CC structure functions

$$W_2^- = x(U + \overline{D}),$$
 $W_2^+ = x(\overline{U} + D)$
 $xW_3^- = x(U - \overline{D}),$ $xW_3^+ = x(D - \overline{U}),$

Due to increased precision of data, more flexibility in functional form is allowed —> 15 free parameters

- PDFs are evolved via evolution equations (DGLAP) to NLO and NNLO (as(MZ)=0.118)
- Thorne-Roberts GM-VFNS for heavy quark coefficient functions as used in MSTW
- Chi2 definition used in the minimisation [MINUIT] accounts for correlated uncertainties:

$$\chi^2_{tot}(\mathbf{m}, \mathbf{b}) = \sum_i \frac{[\mu^i - m^i (1 - \sum_j \gamma^i_j b_j)]^2}{\delta^2_{i,stat} \mu^i m^i (1 - \sum_j \gamma^i_j b_j) + (\delta_{i,unc} m^i)^2} + \sum_j b_j^2 + \sum_i \ln \frac{\delta^2_{i,unc} m_i^2 + \delta^2_{i,stat} \mu^i m^i}{\delta^2_{i,unc} \mu_i^2 + \delta^2_{i,stat} \mu_i^2}$$

New Beauty in DIS from LifeTime-Tagging

DESY-14-083 arXiv:1405.6915

- Inclusive jet cross sections in beauty and charm events are used to:
 - The good agreement of the data and NLO calculations in the visible phase (given by the heavy quark tagging) allow to extrapolate to the full phase space and to measure F2bb (and identical F2cc) :

$$\frac{d\sigma^{b\bar{b}}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \cdot \left[(1 + (1 - y)^{2}) \cdot F_{2}^{b\bar{b}} - y^{2} \cdot F_{L}^{b\bar{b}} \right]$$

- The new measurement is the most precise determination of F₂b from ZEUS
- Data are in good agreement and well described by fixed-order (massive) and variable-flavour (mixed) NLO and NNLO QCD calculations

HERA Charm Data Combination

EPJC 73 (2013) 2311

- Best precision achieved when measurements are combined: 0
 - Charm Data Combination: chi2/ndof = 62/103
 - 155 data points from 9 different measurements of H1 and ZEUS were combined into 52 points
 - efforts in accounting for correlations of systematic uncertainties between data sets

9 different charm reduced cross sections measurements were combined :						
. Data Set	Period	Reconstruction	Q^2 [GeV ²]			
 1) H1 Vertex 	HERA I + II	displaced vtx	5–2000			
 2) H1 D* 	HERA I	D^* decay	2–100			
 3) H1 D* 	HERA II	D^* decay	5–100			
 4) H1 D* 	HERA II	D^* decay	100–1000			
 5) ZEUS D* 	96-97	D^* decay	1–200			
 6) ZEUS D* 	98-00	D^* decay	1.5-1000			
 7) ZEUS D⁰ 	2005	D ⁰ decay	5-1000			
8) ZEUS D ⁺	2005	D^0 decay	5–1000			
 9) ZEUS μ 	2005	semileptonic	20-10000			

Data combination is performed at the reduced charm cross sections level (as in DIS): 0 • they are obtained from xsec in visible phase space and extrapolated to full space

HERA Charm Data Combination

EPJC 73 (2013) 2311

- Best precision achieved when measurements are combined:
 - Charm Data Combination: chi2/ndof = 62/103
 - 155 data points from 9 different measurements of H1 and ZEUS were combined into 52 points
 - efforts in accounting for correlations of systematic uncertainties between data sets

Measurements of Asymmetries from HERA

- Explore polarisation asymmetry to extract $F_2^{\gamma Z}$
- Explore charge asymmetry to extract $xF_3^{\gamma Z}$ (improved measurement from HERA I+II)

The shape of the distribution reflects their parton sensitivity

Extraction of PDFs through QCD fits

Typical measurements sensitive to PDFs are precise, with statistical uncertainties < 10%, so they follow normal distribution which allows the use of chi square minimisation for PDF extraction.

Flow diagram of a PDF extraction:

Running charm mass m_c(m_c)

EPJC 73 (2013) 2311

 Charm combination can also be used in a NLO QCD analysis in FFN scheme to determin<u>e the</u> running of charm-quark mass mc(mc) in MS:

$$m_c(m_c) = 1.26 \pm 0.05_{\text{exp}} \pm 0.03_{\text{mod}} \pm 0.02_{\text{param}} \pm 0.02_{\alpha_s} \text{ GeV}$$

• which is in agreement with the world average extraction:

 $m_{c}(m_{c}) = 1.275 \pm 0.025 \text{ GeV}$

• This has triggered the question:

—> how about measuring the running of m_c?

ggH studies

Review of HERAPDF sets:

PDFs at HERA are determined from QCD Fits to solely HERA data

HERAPDF1.0:

- Combined NC and CC HERA-I data
- NLO set, RT scheme —> available in LHAPDF

HERAPDF1.5(prel.) -> recommended so far:

- Include additional NC and CC HERA-II data
- LO, NLO, NNLO sets -> available in LHAPDF

HERAPDF1.6 (prel., not public)

- Include additional NC inclusive jet data 5 < Q2 < 15000
- $\alpha s = 0.1202 \pm 0.0013 (exp) \pm 0.004 (scales)$ free in fit
- NLO

HERAPDF1.7 (prel. not public)

- Include F2cc data 4 < Q2 < 1000
- Include combined cross section points Ep=575/460 GeV
- NLO

HERAPDF2.0(prel)

Summary

PDFs are very important as they still limit our knowledge of cross sections whether SM or BSM.

- HERA has finalised its separate measurements relevant to PDFs and ongoing efforts on combining final measurements to reach its ultimate precision:
 - PDFs, mc, mb, alphas ...
- JLAB has a dedicated program on improving PDFs at high x
- Standard Model LHC measurements can themselves contribute to PDF discrimination and PDF improvement:

... Many more valuable measurements are already available, but not covered in this talk ...

- More precision measurements from LHC to come from Run I and in future from Run 2
- Intense activity of PDF groups to include constraining information in new releases
- Future Facilities to further push our limits are being considered ...

Many Thanks!

testing EMC effect

Marathon's idea:

Defining the EMC-type ratios for the F_2 structure functions of ³He and ³H (weighted by corresponding isospin factors) by: $R(^{3}\text{He}) = \frac{F_{2}^{^{3}\text{He}}}{2F_{2}^{^{9}} + F_{2}^{^{n}}} , \qquad R(^{3}\text{H}) = \frac{F_{2}^{^{3}\text{H}}}{F_{2}^{^{9}} + 2F_{2}^{^{n}}} ,$.5 (14)one can write the "super-ratio", \mathcal{R} , of these as: $\mathcal{R} = \frac{R(^{3}\text{He})}{R(^{3}\text{H})}$. (15) ⁿ/_p.3 Inverting this expression directly yields the ratio of the free neutron to proton structure .2 functions: $\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^{3}\text{He}}/F_2^{^{3}\text{H}}}{2F_2^{^{3}\text{He}}/F_2^{^{3}\text{H}} - \mathcal{R}}.$ (16)0.6 0.8 х

We stress that F_2^n/F_2^p extracted via Equation 16 does not depend on the size of the EMC effect in ³He or ³H, but rather on the *ratio* of the EMC effects in ³He and ³H. If the neutron and proton distributions in the A = 3 nuclei are not dramatically different, one might expect $\mathcal{R} \approx 1$. To test whether this is indeed the case requires an explicit calculation of the EMC effect in the A = 3 system.

a schematic view of the progress

• Snapshot from M. Ubiali:

