

Jet Production at HERA and determination of α_s

A.Baghdasaryan (Yerevan Physics Institute)

On behalf of the H1 and ZEUS collaborations

QCD 2014, Montpellier 30 June 2014

HERA experiments

- ep collider:
- e[±] energy: 27.6 GeV
- p energy: 920 GeV
- Center of mass energy: 319 GeV
- 2 collider experiments: H1 and ZEUS
- Integrated luminosity: ~0.5 fb⁻¹ (per experiment)

e

- Q² photon virtuality
- x Bjorken scaling variable
- y inelasticity

e

A.Baghdasaryan

Jet Production

Jet production in ep collision at HERA is a testing ground for perturbative QCD (pQCD).

Jet cross sections

- inclusive jet (contribution of every jet in event),
- dijet and trijet (contribution of events with more than two and three jets correspondingly),
- as well as normalised to neutral current (NC) DIS jet cross sections (which have significantly reduced, compared to absolute ones, correlated systematical and lumi uncertainties)
- 1. used to test pQCD
- 2. provide a precise determinations of $\alpha_s(M_Z)$
- 3. restrict gluon PDF-s

Jet Production in DIS

-4 -

Jet Measurements in DIS (H1)

Simultaneous measurement of inclusive, dijet, trijet cross sections and normalised to DIS cross sections (DESY-14-0891) with:

- photon virtuality $150 < Q^2 < 15000 \text{ GeV}^2$
- inelasticity 0.2<y<0.7
- jet transverse momentum $P_T > 7$ GeV (inclusive) and $P_T > 5$ GeV (dijet and trijet).

High Statistics:

-5 -

L =351pb⁻¹ (small statistical uncertainties even at large Q² and P_T)

Excellent control of systematical uncertaities:

electron energy scale 0.5-1% => effect on cross sections < 2%</td>jet energy scale 1%=> effect on cross sections 2-6%acceptance correction:4-5% uncertainty

Trigger uncertainty- 1%Luminosity uncertainty- 2.5%

A.Baghdasaryan

⁻⁶⁻ Multijet Cross Sections in NC DIS at High Q²

 Data measured - using regularised unfolding

• NLO Calculation -NLOJet++ corrected for hadronisation effects

Scale Choice: $\mu_f^2 = Q^2$ $\mu_r^2 = (Q^2 + P_T^2)/2$

NLO QCD with MSTW2008 describes well inclusive jet, dijet and trijet differential cross sections

A.Baghdasaryan

⁻⁷⁻ A comparison of the $k_{\rm T}$ and anti– $k_{\rm T}$ algorithms

Double differential double ratios of anti- $k_{\rm T}$ jet cross sections to NLO calculations divided by the ratio of $k_{\rm T}$ jet cross sections to their theory predictions equal to one within their unsertainties

A.Baghdasaryan

Normalised to NC DIS Multijet Cross Sections at High Q²

- Data measured using regularised unfolding
- NLO Calculation -NLOJet++ and QCDNUM corrected for hadronisation effects

Scale Choice: $\mu_f^2 = Q^2$ $\mu_r^2 = (Q^2 + P_T^2)/2$

Benefit:

partial cancellation of experimental and theoretical uncertainties

- Small experimental uncertainties
- Good NLO description of the data

Determination of $\alpha_s(M_z)$

The measured absolute and normalised cross sections based on k_T anti- k_T jet algorithms were used to determine $\alpha_s(M_Z)$ values.

The best experimental precision on $\alpha_s(M_Z)$ is obtained from a fit to normalised multijet cross sections, yielding: $\alpha_s(M_Z) = 0.1165 \ (8)_{exp} \ (5)_{PDF} \ (7)_{PDFset} \ (3)_{(PDF)(\alpha s)} \ (8)_{had} \ (36)_{\mu r} \ (5)_{\mu f} = 0.1165 \ (8)_{exp} \ (38)_{pdf,theo}$

A very similar result is obtained when using anti- k_{T} algorithm.

The extracted $\alpha_s(M_Z)$ -value is experimentally the most precise α_s from jet data. It is compatible within uncertainties with the world average value and with $\alpha_s(M_Z)$ -values from other data.

Theoretical uncertainties are larger than the experimental

Running of α_s

The running of $\alpha_s(\mu_r)$, determined from the normalised multijet cross sections is consistent with the expectation from the renormalisation group equation and with values of $\alpha_s(\mu_r)$ from other jet measurements

A.Baghdasaryan

Trijet Cross Sections in NC DIS (ZEUS)

Trijet production in neutral current DIS has been measured (ZEUS-prel-14-008) with:

- photon virtuality 125 < Q² < 20000 GeV²
- inelasticity 0.2<y<0.6
- jet transverse momentum $E^{jet}_{T,B} > 8 \text{ GeV}$.

Statistics:

L =295pb⁻¹

A major source of systematic uncertainties:

jet energy scale ~1% (3%), for jets with $E^{jet}_{T,L}$ >10GeV (<10GeV)

NLO Calculation -

NLOJet++ corrected for hadronisation effects Used PDF - HERAPDF1.5

Scale Choice:

 $E^{jet}_{T,B}$ is average transverse momentum of the first three leading jets.

A.Baghdasaryan

⁻¹²⁻ Single Differential Trijet Cross Sections

Jet Production at HERA ...

-13- Double Differential Trijet Cross Sections

Good agreement between data and NLO calculations

Summary

Experimental Data

- Simultaneous measurement of inclusive, dijet, trijet cross sections and normalised to DIS cross sections using regularised unfolding using H1 detector is presented
- The results obtaining when using k_{T} algorithm are very similar to results obtaining using anti- k_{T} algorithm
- Measurement of trijet cross sections using ZEUS detector is presented
- pQCD calculations describe the data

Measurement of α_s

• The extracted from normalised cross sections strong coupling is experimentally the most precise α_s from jet data and is compatible with world average

Theory

• Missing the higher orders is the dominated source of uncertainty

A.Baghdasaryan