Charm and beauty structure functions

and running quark masses at HERA

26.8.14

Achim Geiser DESY Hamburg

for the

H1 and ZEUS collaborations + S. Moch

QCD@LHC workshop, Suzdal, Russia, 26.8.2014

charm data combination, PDF fits, m_c

DESY-12-172, EPJ C73 (2013) 2311

m_c **running** H1-prelim-14-071, ZEUS-prel-14-006, +S. Moch

beauty struct. func., mb DESY-14-083, arXiv:1405.6915

A. Geiser, charm and beauty mass, QCDLHC 14

27.6 GeV γ^{α_s} g(x) g(x)

> see also related talks S. Moch, O. Zenaiev 1

Combination result

well described using HERAPDF1.5 (fitted from inclusive DIS only)

EPJ C73 (2013) 2311

strong charm mass dependence (blue band: 1.35->1.6 GeV)

constrains PDFs
-> add to PDF fits
of inclusive HERA data

comparison to various VFNS

more comparisons see paper

as implemented in HERAFitter (talk R. Placakyte)

m_c (pole) fixed to 1.4 GeV

differences mainly due to different matching schemes of massive and massless parts

+ corresponding additional parameters in interpolation terms

-> we treat mass in VFNS as effective parameter

comparison to various VFNS

26.8.14

Z, W cross section predictions for LHC

Charm data stabilize sea flavour composition

example: RT optimal scheme

H1 and ZEUS

and reduce gluon uncertainty

-> reduces uncertainty also for Higgs at LHC

26.8.14

fixed flavour number scheme (FFNS)

+ NLO (+partial NNLO) corrections,

no charm in proton

 full kinematical treatment of charm mass (multi-scale problem: Q², p_T, m_c -> logs of ratios)

"natural" scale: Q² + 4m_c²

no resummation of logs

comparison to ABM FFNS

EPJ C73 (2013) 2311

very good description of data in full kinematic range

unambigous treatment of m_c in all terms of calculation

here: MS running mass

(similar predictions for pole mass)

measurement of MS charm mass

EPJ C73 (2013) 2311

simultaneous QCD fit of combined charm data and inclusive HERA I DIS data

 $m_{c}(m_{c}) = 1.26 \pm 0.05_{exp} \pm 0.03_{mod} \pm 0.02_{\alpha s} GeV$ $PDG: 1.275 \pm 0.025 GeV \text{ (lattice QCD + time-like processes)}$ 26. 8. 14 A. Geiser, charm and beauty mass, QCDLHC 14

running of $\alpha_{\rm s}$ and quark masses

 α_s running depends on number of coulours N_c and number of quark flavours N_F

$$\alpha_{s}(Q^{2}) = \frac{\alpha_{s}(Q_{0}^{2})}{1 + \alpha_{s} \times (11N_{c} - 2N_{F})/12\pi \ln(Q^{2}/Q_{0}^{2})}$$

= quark mass running depends on α_s , e.g. $m_c(\text{pole}) = m_c(m_c) (1 + 4/3 \alpha_s/\pi)$ $= m_c(Q) (1 + \alpha_s/\pi (4/3 + \ln(Q^2/m_c^2)))$

part of gluon field around quark not 'visible' any more when 'looking' at smaller distances/larger energy scales -> effective mass decreases

26.8.14

measurement of m_c running

H1-prelim-14-071, ZEUS-prel-14-006, + S. Moch

ZEUS

m_c fit and uncertainties

Variation of the factorisation and renormalization scales of heavy quarks by factor 2 -> outer error bar

sensitivity to $m_c(m_c)$ decreases with increasing scale $\mu^2 = Q^2 + 4m_c^2$

'in reality', have measured $m_c(\mu)$ at each scale

26. 8. 14 A. Geiser, charm and beauty mass, QCDLHC 14

ZEUS

🐠 the running charm quark mass 🥻

H1-prelim-14-071, ZEUS-prel-14-006, + S. Moch-

translate back to $m_c(\mu)$ using LO formula consistent with NLO \overline{MS} QCD fit (OpenQCDrad, Alekhin et al.)

beauty in DIS at HERA

beauty cross section at HERA much smaller than charm, can use lifetime information (micro-vertex detector)

26.8.14

m_b from reduced beauty cross section

DESY-14-083

ZEUS

PDG: 4.18 ± 0.03 GeV (lattice QCD + time-like processes) A. Geiser, charm and beauty mass, QCDLHC 14

26.8.14

the running beauty quark mass

translate back to $2m_b$

26.8.14

A. Geiser, charm and beauty mass, QCDLHC 14

ZEUS

ZEUS

Summary and conclusions

combined HERA DIS charm data are sensitive to charm mass and constrain PDFs

- -> improved predictions for LHC
- well described by NLO QCD in FFNS
 -> measure MS charm mass
 m_c(m_c) = 1.26 ±0.05_{exp} ±0.03_{mod} ±0.02_{αs} GeV

split data into subsets spanning different scales
 -> first measurement of charm mass running (QCD consistency check)

 ZEUS DIS beauty data well described by NLO QCD (not yet combined with H1)
 -> measure MS beauty mass m_b(m_b) = 4.07 ±0.14_{fit} ^{+0.01}-0.07 mod ^{+0.05}-0.00 par ^{+0.08}-0.05 th GeV

compare to PDG and LEP

-> beauty mass running consistent with QCD

-> improved predictions for LHC

well described by NLO QCD in FFNS
 -> measure MS charm mass
 m_c(m_c) = 1.26 ±0.05_{exp} ±0.03_{mod} ±0.02_{αs} GeV

 $m_{\rm b}/Js_{\rm HERA} \sim m_{\rm t}/Js_{\rm LHC}$ relate HERA m_c, m_b with LHC m₊ measurements?

split data into subsets spanning different scales
 -> first measurement of charm mass running (QCD consistency check)

 ZEUS DIS beauty data well described by NLO QCD (not yet combined with H1)
 -> measure MS beauty mass m_b(m_b) = 4.07 ±0.14_{fit} ^{+0.01}-0.07 mod ^{+0.05}-0.00 par ^{+0.08}-0.05 th GeV

compare to PDG and LEP

-> beauty mass running consistent with QCD

26. 8. 14

Deep Inelastic ep Scattering at HERA

26.8.14

26.8.14

A. Geiser, charm and beauty mass, QCDLHC 14

23

Quark mass definitions

Pole quark mass

- Based on (unphysical) concept of quark being a free parton
- Pole mass is ambiguous up to corrections of O(Λ_{QCD})

Running quark mass (\overline{MS})

- MS (minimal subtraction scheme) mass definition m(μ_R) realizes running mass (scale dependence)
- renormalization group equation (mass anomalous dimension γ)

$$\left(\mu_R^2 \frac{\delta}{\delta \mu_R^2} + \beta(\alpha_s) \frac{\delta}{\delta \alpha_s}\right) m(\mu_R) = \gamma(\alpha_s) m(\mu_R)$$

Measurement of the charm quark mass running

From $m_c(m_c)$ it was translated back to $m_c(\mu)$ by 1-loop formula :

$$m_c(\mu) = m_c(m_c) \frac{\left(\frac{\alpha_s(\mu)}{\pi}\right)^{\frac{1}{\beta_0}}}{\left(\frac{\alpha_s(m_c)}{\pi}\right)^{\frac{1}{\beta_0}}}$$

Where β_0 for $N_f=3$ is $\frac{9}{4}$ $\mu = \sqrt{Q^2 + 4m_c^2}$, This formula is the same that is used in the QCD fit (OpenQCDRad). [arXiv:hep-ph/0004189] Q^2 was chosen to be log average between Q^2 of used bins

Charm mass measurement

- χ² mass scan had been performed by fitting charm data in FFNS ABM(MS) scheme (OPENQCDRAD program) using HeraFitter package with following setup:
- FFNS ABM (running mass)
- Evolution starting scale set to $Q_0=1.4 \ GeV^2$
- PDF parametrisation with 13 parameters
- H12011 χ^2 function definition
- $\alpha_s(M_z) = 0.105$
- Data below $Q^2 = 3.5 \ GeV^2$ removed
- $-m_b(m_b)$ was set to 4.75
- Renormalization and factorization scale was set to $\sqrt{Q^2 + 4m_q^2}$

《中区 《聞区 《臣区 《臣区 三臣

200

the running b quark mass at LEP

Fig. 6. The energy evolution of the \overline{MS} -running b-quark mass $m_b(Q)$ as measured at LEP. DELPHI results from $R_3^{b\ell}$ [7] at the M_Z scale and from semileptonic B-decays [31] at low energy are shown together with results from other experiments (ALEPH [4], OPAL [5] and SLD [6]). The masses extracted from LO and approximate NLO calculations of $R_4^{b\ell}$ are found to be consistent with previous experimental results and with the reference value $m_b(Q)$ (grey band) obtained from evolving the average $m_b(m_b) = 4.20 \pm 0.07 \text{ GeV}/c^2$ from [17] using QCD RGE (with a strong coupling constant value $\alpha_s(M_Z) = 0.1202 \pm 0.0050$ [30])

LEP: Z -> bb + gluons, measurement of phase space/ angular distributions

 $m_{(Q)} = m_{(Q_0)} (1 - \alpha_s / \pi \ln(Q^2 / Q_0^2))$

charm mass running not explicitly measured (so far)

26.8.14

Variable Flavour Number Scheme (GM-VFNS)

very high Q²:
massless charm in proton
resummation of log(Q²/m²) etc.

very low Q²:
massive calculation (pole mass)

+ NNLO, $O(\alpha_s^2)$ corrections

 in between (almost everywhere):
 kinematic interpolation and/or correction terms