Inclusive DIS at HERA & PDF Fits

- Introduction
- HERA-II Data Sets
- Combination Procedure
- Combined Data Precision
- HERAPDF 2.0

Eram Rizvi

QCD@LHC Suzdal, Russian Federation

25th-29th August 2014

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^2} = \frac{2\pi\alpha^2}{x} \left[\frac{1}{Q^2}\right]^2 \left[Y_+\tilde{F}_2 \mp Y_-x\tilde{F}_3 - y^2\tilde{F}_L\right]$$
$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^2} = \frac{G_F^2}{4\pi x} \left[\frac{M_W^2}{M_W^2 + Q^2}\right]^2 \left[Y_+\tilde{W}_2^{\pm} \mp Y_-x\tilde{W}_3^{\pm} - y^2\tilde{W}_L^{\pm}\right]$$
$$Y_{\pm} = 1 \pm (1-y)^2$$

 $\tilde{F}_{2} \propto \sum (xq_{i} + x\overline{q}_{i})$ Domining $x\tilde{F}_{3} \propto \sum (xq_{i} - x\overline{q}_{i})$ Only a $\tilde{F}_{L} \propto \alpha_{s} \cdot xg(x,Q^{2})$ Only a

Dominant contribution

Only sensitive at high $Q^2 \sim M_Z^2$

Only sensitive at low Q^2 and high y

The NC reduced cross section defined as:

$$\tilde{\sigma}_{NC}^{\pm} = \frac{Q^2 x}{2\alpha\pi^2} \frac{1}{Y_+} \frac{d^2 \sigma^{\pm}}{dx dQ^2}$$
$$\tilde{\sigma}_{NC}^{\pm} \sim \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3$$

The CC reduced cross section defined as:

similarly for pure weak CC analogues:
$$W_2^{\pm}$$
, xW_3^{\pm} and W_L^{\pm}

$$\sigma_{CC}^{\pm} = \frac{2\pi x}{G_F^2} \left[\frac{M_W^2 + Q^2}{M_W^2} \right]^2 \frac{d\sigma_{CC}^{\pm}}{dx dQ^2}$$
$$\frac{d\sigma_{CC}^{\pm}}{dx dQ^2} = \frac{1}{2} \left[Y_+ W_2^{\pm} \mp Y_- x W_3^{\pm} - y^2 W_L^{\pm} \right]$$

HERA data cover wide region of x, Q^2

 $\frac{NC\ Measurements}{F_2\ dominates\ most\ of\ Q^2\ reach} \\ xF_3\ contributes\ in\ EW\ regime \\ F_L\ contributes\ only\ at\ highest\ y$

 $\frac{CC\ Measurements}{W_2\ and\ xW_3\ contribute\ equally} W_L\ only\ at\ high\ y$

LHC: largest mass states at large x For central production $x=x_1=x_2$ $M=x\sqrt{s}$ i.e. M > I TeV probes x>0.1 Searches for high mass states require precision knowledge at high x Z' / quantum gravity / susy searches... DGLAP evolution allows predictions to be made High x predictions rely on

- data (DIS / fixed target)
- sum rules
- behaviour of PDFs as $x \rightarrow I$

HERA-1 operation 1993-2000 Ee = 27.6 GeV Ep = 820 / 920 GeV $\int \mathcal{L} \sim 110 \text{ pb}^{-1} \text{ per experiment}$

<u>HERA-II operation 2003-2007</u> Ee = 27.6 GeV Ep = 920 GeV $\int \mathcal{L} \sim 330 \text{ pb}^{-1}$ per experiment Longitudinally polarised leptons

Low Energy Run 2007 Ee = 27.6 GeV Ep = 575 & 460 GeV Dedicated F_L measurement

Summary of HERA-I datasets Combined in HERAPDFI.0

Available since 2009

Data Set		x Range		Q^2 Range		L	e^+/e^-	\sqrt{s}
				GeV ²		pb^{-1}		GeV
H1 svx-mb	95-00	5×10^{-6}	0.02	0.2	12	2.1	<i>e</i> ⁺ <i>p</i>	301-319
H1 low Q^2	96-00	2×10^{-4}	0.1	12	150	22	<i>e</i> ⁺ <i>p</i>	301-319
H1 NC	94-97	0.0032	0.65	150	30000	35.6	<i>e</i> + <i>p</i>	301
H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301
H1 NC	98-99	0.0032	0.65	150	30000	16.4	<i>e</i> ⁻ <i>p</i>	319
H1 CC	98-99	0.013	0.40	300	15000	16.4	<i>e</i> ⁻ <i>p</i>	319
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	<i>e</i> ⁻ <i>p</i>	319
H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319
H1 CC	99-00	0.013	0.40	300	15000	65.2	<i>e</i> ⁺ <i>p</i>	319
ZEUS BPC	95	2×10^{-6}	6×10^{-5}	0.11	0.65	1.65	<i>e</i> ⁺ <i>p</i>	301
ZEUS BPT	97	6×10^{-7}	0.001	0.045	0.65	3.9	e^+p	301
ZEUS SVX	95	1.2×10^{-5}	0.0019	0.6	17	0.2	e^+p	301
ZEUS NC	96-97	6×10^{-5}	0.65	2.7	30000	30.0	<i>e</i> ⁺ <i>p</i>	301
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	301
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e^-p	319
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	<i>e</i> ⁻ <i>p</i>	319
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	319
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e^+p	319

High Q^2 NC and CC data limited to 100 pb⁻¹ e⁺p 16 pb⁻¹ e⁻p

HERA Structure Function Data

Data Set		x G	rid	O^2/Ge^2	V ² Grid	L	e^{+}/e^{-}	\sqrt{s}	x, O^2 from	Ref.
		from	to	from	to	pb^{-1}	,	GeV	equations	
HERA I $E_p = 820$ GeV and $E_p = 920$ GeV data sets										
H1 svx-mb	95-00	0.000005	0.02	0.2	12	2.1	e^+p	301, 319	11,15,16	[2]
H1 low O^2	96-00	0.0002	0.1	12	150	22	e^+p	301, 319	11.15.16	[3]
H1 NC ~	94-97	0.0032	0.65	150	30000	35.6	e^+p	301	17	[4]
H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301	12	[4]
H1 NC	98-99	0.0032	0.65	150	30000	16.4	e^{-p}	319	17	[5]
H1 CC	98-99	0.013	0.40	300	15000	16.4	$e^{-}p$	319	12	[5]
H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e^-p	319	11	[6]
H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319	17	[6]
H1 CC	99-00	0.013	0.40	300	15000	65.2	e^+p	319	12	[6]
ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e^+p	300	11	[10]
ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300	11, 17	[11]
ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300	11	[12]
ZEUS NC	96-97	0.00006	0.65	2.7	30000	30.0	e^+p	300	19	[13]
ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	300	12	[14]
ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e ⁻ p	318	18	[15]
ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e ⁻ p	318	12	[16]
ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	318	18	[17]
ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e^+p	318	12	[18]
HERA II $E_p = 920 \text{GeV}$	data sets	L		1				I	I	
H1 NC	03-07	0.0008	0.65	60	30000	182	e^+p	319	11, 17	$[7]^1$
H1 CC	03-07	0.008	0.40	300	15000	182	e^+p	319	12	$[7]^1$
H1 NC	03-07	0.0008	0.65	60	50000	151.7	$e^{-}p$	319	11, 17	$[7]^1$
H1 CC	03-07	0.008	0.40	300	30000	151.7	e^-p	319	12	$[7]^1$
H1 NC med $Q^2 * y.5$	03-07	0.0000986	0.005	8.5	90	97.6	e^+p	319	11	[9]
H1 NC low $\tilde{Q}^2 * y.5$	03-07	0.000029	0.00032	2.5	12	5.9	e^+p	319	11	[9]
\sim ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e^+p	318	11,12,18	[21]
ZEUS CC	06-07	0.0078	0.42	280	30000	132	e^+p	318	12	[22]
ZEUS NC	05-06	0.005	0.65	200	30000	169.9	e^{-p}	318	18	[19]
ZEUS CC	04-06	0.015	0.65	280	30000	175	$e^{-}p$	318	12	[20]
ZEUS NC nominal *9	06-07	0.000092	0.008343	7	110	44.5	e^+p	318	11	[23]
ZEUS NC satellite *9	06-07	0.000071	0.008343	5	110	44.5	e^+p	318	11	[23]
HERA II $E_p = 575$ GeV data sets										
H1 NC high Q^2	07	0.00065	0.65	35	800	5.4	e^+p	252	11,17	[8]
H1 NC low \tilde{Q}^2	07	0.0000279	0.0148	1.5	90	5.9	e^+p	252	11	[9]
\sim ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e^+p	251	11	[23]
ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	e^+p	251	11	[23]
HERA II $E_n = 460 \text{GeV}$	data sets			1			1		1	
H1 NC high O^2	07	0.00081	0.65	35	800	11.8	$e^+ p$	225	11.17	[8]
H1 NC low \tilde{O}^2	07	0.0000348	0.0148	1.5	90	12.2	e^+p	225	11	[9]
ZEUS NC nominal	07	0.000184	0.016686	7	110	13.9	e^+p	225	11	[23]
ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	e^+p	225	11	[23]

HI & ZEUS have now published all datasets

- HERA-II measurements at high $\int \mathcal{L}$
- reduced \sqrt{s} data

- NC & CC cross sections
- e⁺p and e⁻p scattering
- 4 different \sqrt{s} values

2927 data points in total

In some cases 6 measurements combined

⁴¹ data sets to be combined:

H1 & ZEUS Data Combination

H1 & ZEUS Data Combination

<u>-</u>

i data points *j* systematic error sources Correlated uncertainties treated multiplicative: size proportional to central averaged value True for normalisation uncertainties

Perhaps not true for other uncertainties

$$\chi_{tot}^{2}(\mathbf{m}, \mathbf{b}) = \sum_{i} \frac{[\mu^{i} - m^{i}(1 - \sum_{j} \gamma_{j}^{i} b_{j})]^{2}}{\delta_{i,stat}^{2} \mu^{i} m^{i}(1 - \sum_{j} \gamma_{j}^{i} b_{j}) + (\delta_{i,unc} m^{i})^{2}} + \sum_{j} b_{j}^{2}$$

- μ^i = measurement
- m^i = averaged value
- $y^{i_{j}}$ = correlated relative (%) sys uncertainty on point *i* from error source *j*
- b_j = systematic error source strength

nuisance parameter left free in fit but constrained -

no extra degrees of freedom due to additional constraint

For HERAPDF2.0 number of correlated error sources j = 162

These include:

b/g uncertainty luminosity uncertainty EM calibration scale

had calibration scale

etc....

Extra procedural uncertainty included: difference between using additive vs multiplicative correlated uncertainties (except normalisation) \Rightarrow extra ~0.5% uncertainty

Are correlated point-to-point within a single measurement Reported in detail in individual publications from experiments May also be correlated across measurements May also be correlated between HI & ZEUS (e.g. had scale & photoproduction b/g)

H1 and ZEUS preliminary

Overall χ^2 /ndf = 1685 / 1620 = 1.04

Pulls defined for each measurement difference between measured & average values after applying sys shifts b_j in units of uncorrelated uncertainty

Pulls of the data points should be distributed as a unit Gaussian

pull

4

pull

Each measurement channel shows pull centred on zero & unit width

NC e⁺p inclusive cross sections

Significant improvement in NC uncertainties for Q² > 100 GeV² for \sqrt{s} =318 GeV Compared to HERA I combination: factor 3 increase in statistical precision stat error < 0.9% for Q² up to 400 GeV² total error < 1.3% for Q² up to 400 GeV²

NC e⁻p inclusive cross sections

Significant improvement in NC uncertainties for Q² > 100 GeV² for \sqrt{s} =318 GeV Compared to HERA I combination: factor 10 increase in statistical precision stat error < 0.9% for Q² up to 400 GeV² total error < 1.6% for Q² up to 400 GeV²

CC e⁺p inclusive cross sections

At high x the CC e⁺p cross sections provide direct clean access to the *xd* density Compared to HERA I combination: factor 3 increase in statistical precision HERAPDF1.0 combination total error ~10-20% HERAPDF2.0 combination total error ~5-10% up to x ~ 0.25 Dominated by statistical precision

H1 & ZEUS Data Combination

x ~ 10⁻² is a sweet-spot high precision with long Q² lever arm relevant for LHC Higgs production

Precision: 1.2% Q² < 60 GeV² 1.3% Q² < 400 GeV² 2% Q² < 1200 GeV²

Compendium for HERAPDF

<u>Å</u>

HERAPDFI.0

Combine NC and CC HERA-I data from HI & ZEUS Complete MSbar NLO fit NLO: standard parameterisation with 10 parameters $\alpha_s = 0.1176$ (fixed in fit)

HERAPDF1.5

Include additional NC and CC HERA-II data Complete MSbar NLO and NNLO fit NLO: standard parameterisation with 10 parameters <u>HERAPDF1.5f</u> NNLO: extended fit with 14 parameters

HERAPDF1.6

Include additional NC inclusive jet data $5 < Q^2 < 15000$

Complete MSbar NLO fit

NLO: standard parameterisation with 14 parameters

 $\alpha_s = 0.1202 \pm 0.0013 \text{ (exp)} \pm 0.004 \text{ (scales)}$ free in fit

HERAPDF1.7

Include 41 additional F_2^{cc} data 4 < Q^2 < 1000

Include 224 combined cross section points $E_p=575/460$ GeV

Complete MSbar NLO fit

NLO: standard parameterisation with 14 parameters

HERAPDF2.0

Include final: HERA-I low/medium Q² precision F₂ HERA-II high Q² NC/CC data HERA-II low/medium energy NC data NLO & NNLO fits

Final structure function measurements from H1 / ZEUS now published Combination of the data is underway New combination will include: HERA-I published data HERA-II published data low/medium energy E_p =575/460 GeV run data

Rep. Prog. Phys. 76 (2013) 046201

E Perez and E Rizvi

Table 3. Comparison between the recent QCD analyses of several groups. The upper part of the table indicates which experimental data are included in the fit. The main ingredients of the theoretical framework used in these analyses are given in the lower part of the table. Updated and expanded from [239].

	CTEQ6.6, CT10	MSTW08	NNPDF2.1, 2.3	ABKM09, ABM11	HERAPDF1.0, 1.5	GJR08, JR09
HERA DIS	+	+	+	+	+	+
Fixed target DIS	+	+	+	+	_	+
Fixed target Drell-Yan	+	+	+	+	_	+
Tevatron jets	+	+	+	+ (NLO ABM11)	_	+ (GJR08)
Tevatron W, Z	+	+	+	<u> </u>	_	<u> </u>
LHC	_	_	+	_	_	_
			(2.3: see section 4.3.3)			
GM-VFNS	+	+	+	_	+	_
	(ACOT)	(Thorne–Roberts)	(FONLL)	(FFNS)	(Thorne–Roberts)	(FFNS)
Q_0^2 (GeV ²)	1.69	1	2	9	1.9	0.5
$\alpha_s(M_Z)$	Fixed	Fitted	Fixed	Fitted	Fixed	Fitted
PDF parameters	26	28	259 (NNs)	24	10 (for 1.0) 14 (for 1.5)	20
Strangeness	$s = \bar{s}$	Some flexibility	Maximal flexibility	$s = \bar{s}$	Assumptions (inc. $s = \bar{s}$)	$s = \bar{s}$
Errors	Hessian	Hessian	Monte Carlo	Hessian	Hessian	Hessian
Tolerance <i>T</i>	~6.1	Dynamical	*	1	1	~ 4.7
$(\Delta \chi^2 = T^2)$		from ~ 1 to ~ 6				
NNLO	—	+	+	+	+	+
					(1.5, preliminary)	(JR09)

HERAPDF 2.0

HERAPDF1.0 & 1.5

Combine NC and CC HERA-I data from HI & ZEUS Complete MSbar NLO fit NLO: standard parameterisation with 10 parameters

NNLO HERAPDF 1.5 with 14p

HERAPDF2.0

Include additional NC and CC HERA-II combined data Complete MSbar NLO and NNLO fit NLO & NNLO fits require 15 parameters

HI-14-042 / ZEUS-prel-14-007

$$xf(x,Q_{0}^{2}) = A \cdot x^{B} \cdot (1-x)^{C} \cdot (1+Dx+Ex^{2})$$

$$xf(x,Q_{0}^{2}) = A \cdot x^{B} \cdot (1-x)^{C} \cdot (1+Dx+Ex^{2})$$

$$xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}}, \qquad xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A_{g}'x^{B_{g}}(1-x)^{C_{g}'},$$

$$xu_{v} \quad xU = xu + xc \qquad xu_{v}(x) = A_{u_{v}}x^{B_{u}}(1-x)^{C_{u_{v}}} (1+E_{u_{v}}x^{2}), \qquad xu_{v}(x) = A_{u_{v}}x^{B_{u}}(1-x)^{C_{u_{v}}} (1+D_{u_{v}}x+E_{u_{v}}x^{2})$$

$$x\overline{U} \quad x\overline{U} = x\overline{u} + x\overline{c} \qquad x\overline{U}(x) = A_{u_{v}}x^{B_{u}}(1-x)^{C_{u_{v}}}, \qquad x\overline{D}(x) = A_{\overline{D}}x^{B_{D}}(1-x)^{C_{D}}, \qquad x\overline$$

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1 + D_{u_v} x + E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1 + D_{\bar{U}} x), \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

fixed or constrained by sum-rules parameters set equal but free NC structure functions

$$F_2 = \frac{4}{9} \left(xU + x\bar{U} \right) + \frac{1}{9} \left(xD + x\bar{D} \right)$$
$$xF_3 \sim xu_v + xd_v$$

CC structure functions

$$W_2^- = x(U + \overline{D}), \qquad \qquad W_2^+ = x(\overline{U} + D)$$
$$xW_3^- = x(U - \overline{D}), \qquad \qquad xW_3^+ = x(D - \overline{U})$$

Additional parameters:

heavy quark masses M_c and M_b are optimised

 $f_s = 0.4 \Rightarrow$ compromise value between unsuppressed ($f_s = 0.5$) and 'default' strange sea from dimuon data

$$\chi_{tot}^{2}(\mathbf{m}, \mathbf{b}) = \sum_{i} \frac{[\mu^{i} - m^{i}(1 - \sum_{j} \gamma_{j}^{i} b_{j})]^{2}}{\delta_{i,stat}^{2} \mu^{i} m^{i}(1 - \sum_{j} \gamma_{j}^{i} b_{j}) + (\delta_{i,unc} m^{i})^{2}} + \sum_{j} b_{j}^{2} + \sum_{i} \ln \frac{\delta_{i,unc}^{2} m_{i}^{2} + \delta_{i,stat}^{2} \mu^{i} m^{i}}{\delta_{i,unc}^{2} \mu_{i}^{2} + \delta_{i,stat}^{2} \mu_{i}^{2}}$$

modified χ^2 definition includes ln term to account for likelihood transition to χ^2 after error scaling

Uncertainties of three types considered

- experimental
- model
- parametrisation

Experimental sources:

Hessian method used

Better control of systematics and correlations

Use traditional error definition $\Delta \chi^2 = 1$ to define error bands

Model Uncertainties:

We consider variations of all assumed input parameters in the fit Deviations from central value fit quadratically summed

Variation	Standard Value	Lower Limit	Upper Limit	
f_s	0.4	0.3	0.5	
M_c^{opt} (NLO) [GeV]	1.47	1.41	1.53	
M_c^{opt} (NNLO) [GeV]	1.44	1.38	1.50	
M_b [GeV]	4.75	4.5	5.0	
Q_{min}^2 [GeV ²]	10.0	7.5	12.5	
Q_{min}^2 [GeV ²]	3.5	2.5	5.0	
Q_0^2 [GeV ²]	1.9	1.6	2.2	

Parametrisation Uncertainty:

Take envelope of variations which include variation of the arbitrary starting scale Q_0^2 all additional 16p fits with non-zero D or E parameters Only significant effect is from Q_0^2 variation

NC e⁺p reduced cross section

Good description of the data over ~full Q² range Shown here for NLO Similar for NNLO

CC e⁺p reduced cross section

Good description of the CC data over full Q^2 range Shown here for NLO & NNLO Similar for e^-p data

HERAPDF 2.0

 Q^{2}_{min} = 3.5 GeV²

Adjust minimum Q^2 cut on data entering fit Already included in uncertainty Look at larger range and effect on χ^2 /ndf

For Q^2_{min} = 3.5 GeV² χ^2/ndf = 1385 / 1130 at NLO χ^2/ndf = 1414 / 1130 at NNLO

For $Q^2_{min} = 10 \text{ GeV}^2$ $\chi^2/\text{ndf} = 1156 / 1001 \text{ at NLO}$ $\chi^2/\text{ndf} = 1150 / 1001 \text{ at NNLO}$

 χ^2 appears to saturate for $Q^2_{min} = 10 \text{ GeV}^2$

Similar behaviour observed for HERA-I combination Not so clear due to lower high Q^2 precision

For HERA-I Q^2_{min} = 3.5 GeV² χ^2 /ndf = 637 / 656 at NLO

Alternative χ^2 definitions show same behaviour Alternative cuts in x, y, Q^2_{max} have much smaller effect

Similar for NLO fit

Compare PDFs at NLO with Q^{2}_{min} =3.5 and 10 GeV²

PDF central values in good agreement for $x > 10^{-3}$ Higher Q^2_{min} cut increase low x gluon uncertainty as expected Large model uncertainty arising from Q^2_{min} cut variation

HERAPDF 2.0: Low x / Q²

Compare PDFs at NNLO with Q^{2}_{min} =3.5 and 10 GeV²

Similar story at NNLO: PDF central values in good agreement for $x>10^{-3}$ Higher Q^2_{min} cut increase low x gluon uncertainty as expected Large model uncertainty arising from Q^2_{min} cut variation

Compare HERAPDF1.5 and HERAPDF2.0 at NNLO

At high x gluon and sea uncertainties reduced gluon & sea distributions become softer in HERAPDF2.0 Uncertainties on valence distributions are reduced

HERA data provided detailed insight into parton dynamics Helped experimentally establish NNLO pQCD Underpins all LHC measurements Precise determination of PDFs (specially gluon) ⇒ accurate predictions of LHC Higgs production

Plan: publish the combined inclusive data & HERAPDF2.0

H1 & ZEUS Data Combination

