

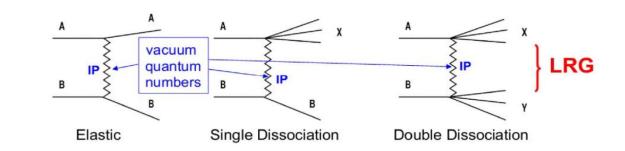
Measurement of diffractive dijet production at the H1 experiment

N. Raičević (University of Montentenegro, Montenegro) on behalf of the H1 collaboration

HERA and luminosity

HERA (DESY, Hamburg): 1992 - 2007

each HERA-I 1992-2000 ~120 pb-1

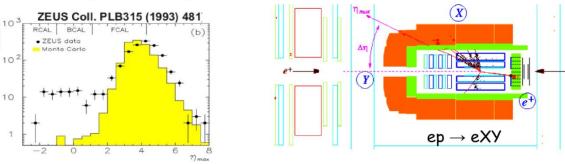

Total lumi H1, ZEUS: 0.5 fb⁻¹

HERA-II 2003-2007 ~380 pb-1

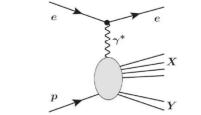
$E_{e^{+}/e^{-}} = 27.6 \text{ GeV}$ HERA-I (E_p = 820, 920 GeV) upgraded to HERA-II (E_p = 920 GeV) Since April 2007 until the end of June • Low energy run - LER - (E_p = 460 GeV) • Medium energy run - MER - (E_n = 575 GeV)

- Measurement of F_L

 \Box Diffraction is a feature of hadron.hadron interactions (30% of σ_{tot})


Beam particles emerge intact or dissociated into low.mass states \rightarrow Very small fractional momentum losses (within a few %)

 \Box Final.state systems separated by large polar angle (or pseudorapidity $\eta = -\ln[\tan(\theta/2)]$) \rightarrow Large Rapidity Gap (LRG)


□ Interaction mediated by t-channel exchange of an object with vacuum quantum numbers (no colour) \rightarrow Pomeron (IP)

Diffraction at HERA

□ Early observation at HERA (1993): Small fraction of DIS events with general properties inconsistent with the dominant mechanism of DIS where color is transferred between the scattered quark and the proton remnant

 \Box Final state systems (X,Y) separated by large polar angle or pseudorapidity \rightarrow LRG events

No color flow between hadron systems Y and X Probing of the structure of color singlet exchange with virtual photon

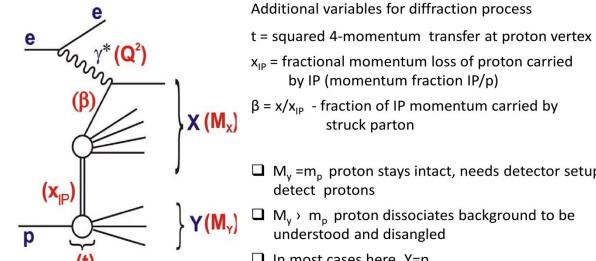
Diffractive events contribute up to 15% of the inclusive DIS cross section

QCD factorisation

□ QCD factorisation (Collins 1998)

 $d\sigma^{ep \to eXp}(\beta, Q^2, x_{IP}, t) = \Sigma f_i^D(\beta, Q^2, x_{IP}, t) \otimes d\sigma^{ei}(\beta, Q^2)$

 f_i^D – diffractive parton density functions (DPDFs) – evolutioning with DGLAP in Q² σ^{ei} – partonic cross sections, same as in inclusive DIS


□ Proton vertex factorisation (Ingelman, Schlein 1985) assume that DPDF factorizes into flux and pomeron PDF

> $f_{i}^{D}(\beta, Q^{2}, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot F_{i}^{IP}(\beta, Q^{2})$ Pomeron flux Pomeron structure function (Regge form)

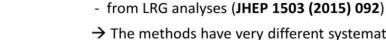
□ H1 results are compared with QCD calculation using H12006 Fit-B which is based on diffractive DIS data with large-rapidity gap selection (Eur. Phys. J. C48 (2006) 715-748)

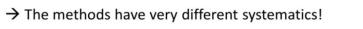
Diffractive DIS kinematics

x - momentum fraction carried by struck quark (q/p)Standard DIS variables: $Q^2 - \gamma^*$ four momentum squared y – event inelascticity

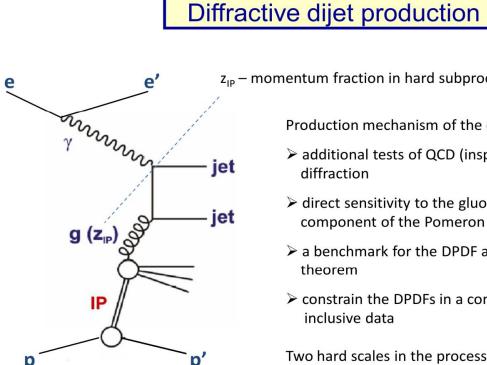
 \square M_v =m_p proton stays intact, needs detector setup to detect protons \square M_v > m_p proton dissociates background to be understood and disangled □ In most cases here, Y=p

Proton tagging		Forward	Proton
ightarrow Detection of the leading proton in forward		Neutron Calorimeter	Dissociatio Taggers
detectors: FPS (Forward Proton Spectrometer) and VFPS (Very Forward Proton Spectrometer)	7 (m)	1	
and VFPS (Very Forward Proton Spectrometer)	220	106 80 61	24-28
Direct extraction of diffractive variables and	1	100 00 01	24-20
no dissociation background (+)	Very Forward Proton	Forwar Proton	
> Small statistics due to the small acceptance (-)	Spectrometer	Spectrom	eter


Large Rapidity Gap (LRG) method


 \rightarrow No activity in the forward detectors required

High statistics Proton dissociation background

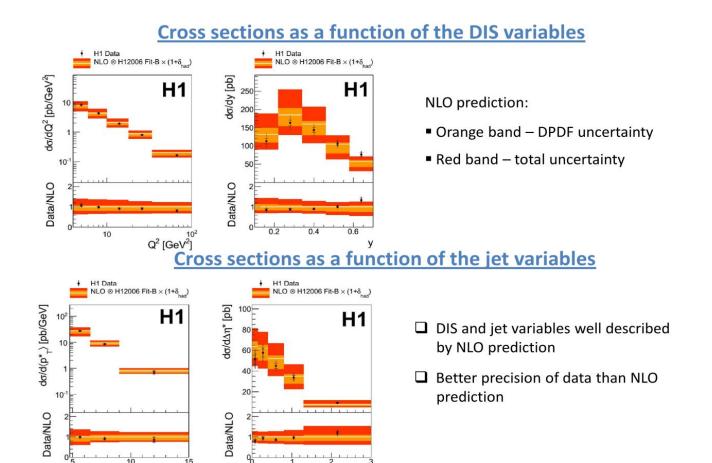

To show here: new results on DIFFRCTIVE DIJET PRODUCTION obtained: - from VFPS (JHEP 1505 (2015) 056)

Empty gap

 $\langle p_{\tau}^* \rangle$ [GeV

z_{IP} – momentum fraction in hard subprocess

Production mechanism of the dijets provide: > additional tests of QCD (inspired) models of

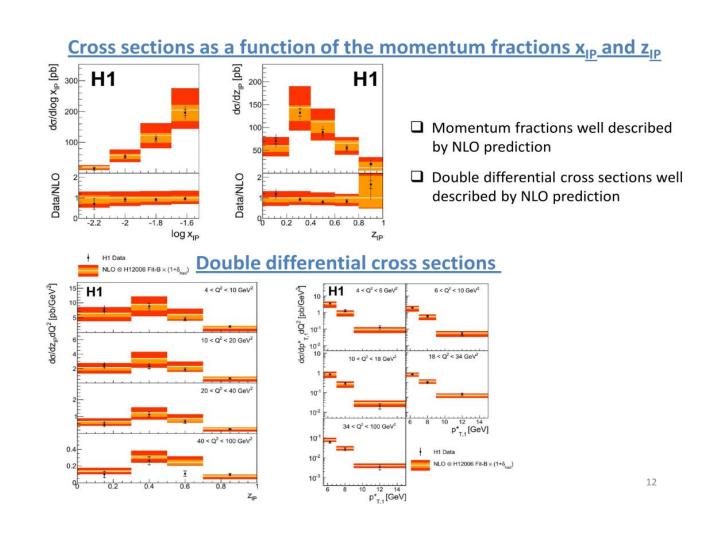

direct sensitivity to the gluon component of the Pomeron

diffraction

> a benchmark for the DPDF and factorisation theorem

> constrain the DPDFs in a combination with the inclusive data

Two hard scales in the process: the virtuality of the photon - the transverse energy of the jets


Diffractive dijet production - LRG

• Events are selected in a phase space which is extended compared to the measurement phase space in order to improve the precision of the measurement by accounting for migrations at the phase space boundaries.

	Extended Analysis Phase Space	Measurement Cross Section Phase Space
DIS	$3 < Q^2 < 100 \text{ GeV}^2$	$4 < Q^2 < 100 \text{ GeV}^2$
	<i>y</i> < 0.7	0.1 < y < 0.7
	$x_{I\!\!P} < 0.04$	$x_P < 0.03$
Diffraction	LRG requirements	$ t < 1 { m GeV^2}$
		$M_Y < 1.6 \text{ GeV}$
	$p_{\rm T,1}^* > 3.0 {\rm GeV}$	$p_{\rm T,1}^* > 5.5 { m ~GeV}$
Dijets	$p_{\rm T,2}^* > 3.0 { m ~GeV}$	$p_{\rm T,2}^* > 4.0 { m ~GeV}$
	$-2 < \eta_{1,2}^{\text{lab}} < 2$	$-1 < \eta_{1,2}^{ m lab} < 2$

The measurement that will be presented here is based on a six times increased luminosity in comparison to the previous H1 measurement of dijet production with LRG.

□ A more sophisticated data correction method than before.

Integrated cross section

 $\sigma_{meas}^{dijet}(ep \rightarrow eXY) = 73 \pm 2 \text{ (stat.)} \pm 7 \text{ (syst.) pb}$ $\sigma_{theo}^{dijet}(ep \rightarrow eXY) = 77 {}^{+25}_{-20} \text{ (scale)} {}^{+4}_{-14} \text{ (DPDF)} \pm 3 \text{ (had) pb}$

NLO predictions

> NLOJET++ with five active flavors used for evaluation at NLO of QCD predictions of the dijet cross sections

> The two-loop approximation of the renormalisation group equation is used for the running of the strong coupling constant with a coupling strength of α s (M₂) = 0.118.

 \succ The cross sections are evaluated in intervals of x_{IP}, effectively replacing the beam proton by a pomeron (slicing method).

> The H12006 Fit-B DPDF set is used in the calculation.

DPDF uncertainties are propagated to predicted cross sections.

> Renormalisation and factorisation scales used: $\mu_r^2 = \mu_f^2 = (p_T^*)^2 + Q^2$.

 \triangleright Scale is varied by a factors of 0.5 or 2.

Experinmental uncertainties

> In total - 10 %, with normalisation uncertainty dominating (8 %).

 \rightarrow The uncertainty on the NLO prediction significantly larger than the experimental uncertainty.

Extraction of $\alpha_{\rm s}$

 \Box NLO works well \rightarrow try to extract α_s

 \Box The double-differential dijet cross sections as a function of Q² and p*₁₁ are used to determine the value of the strong coupling constant α_s (M₇).

 \Box The value of α_s (M₇) is determined by an iterative χ^2 -minimisation procedure using NLO calculations

□ The fit yields a value of χ^2 /ndof = 16.7/14 → good agreement of theory to data.

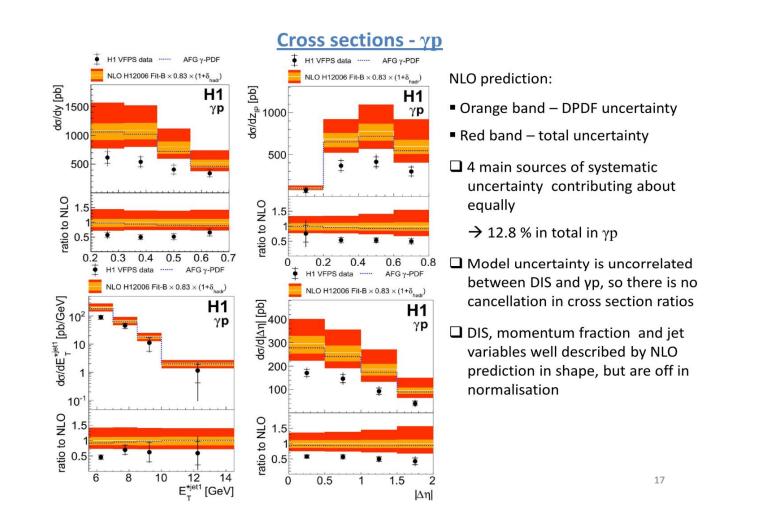
 $\alpha_s(M_Z) = 0.119 \pm 0.004 \,(\text{exp}) \pm 0.002 \,(\text{had}) \pm 0.005 \,(\text{DPDF}) \pm 0.010 \,(\mu_r) \pm 0.004 \,(\mu_f)$ $= 0.119 \pm 0.004 (exp) \pm 0.012 (DPDF, theo)$

 \succ The result for α_s (M₇) is consistent within the uncertainties with the world average

> The largest uncertainties arise from the estimate of the contributions from orders beyond NLO and from the poor knowledge of the DPDF.

> The largest contribution to the experimental uncertainty of 0.003 arises from the global normalisation uncertainty

 \rightarrow First determination of α_s from diffractive dijet production.


Diffractive dijet production – detection of the leading proton

□ Proton detected in Very Forward Proton Spectrometer (VFPS) located 220 m downsteram main detectors full geometric acceptance down to t = 0 \rightarrow used for the first time, such that the diffractive sample is free of background from low-mass proton dissociative states.

 \Box The measurement is performed in **photoproduction** with photon virtualities Q² < 2 GeV² and in deep-inelastic scattering with 4 GeV² < Q^2 < 80 GeV².

	Photoproduction	DIS
Event kinematics	$Q^2 < 2 { m GeV}^2$	$4\mathrm{GeV}^2 < Q^2 < 80\mathrm{GeV}^2$
	0.2 < y < 0.7	
	$0.010 < x_{I\!\!P} < 0.024$	
Diffractive phase space	$ t < 0.6{ m GeV}^2$	
		$z_{I\!\!P} < 0.8$
	$E_T^{*\mathrm{je}}$	$^{t1} > 5.5 \mathrm{GeV}$
Jet phase space	$E_T^{ m * jet2} > 4.0{ m GeV}$	
	-1 <	$<\eta^{ m jet1,2} < 2.5$

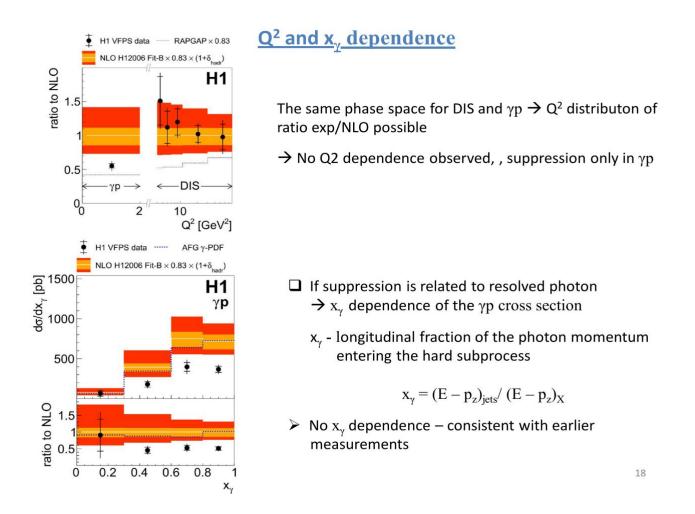
 \rightarrow Identical phase space: for DIS – scattered electron detected for PHP – absence of scattered electron.

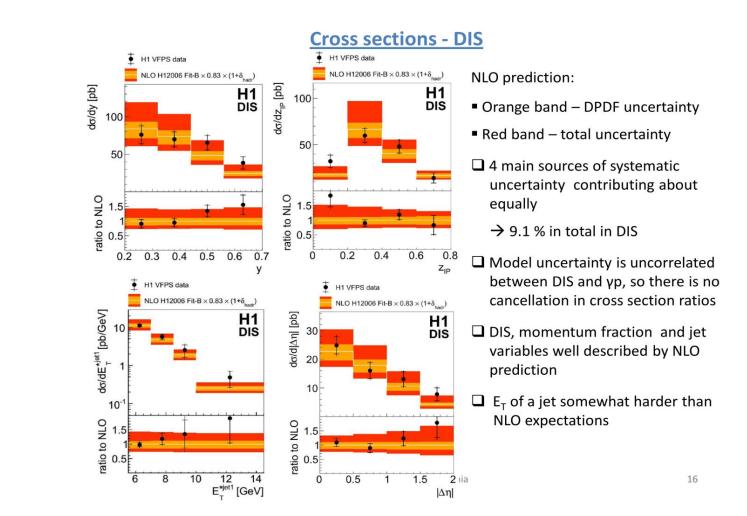
Integrated ep diffractive dij	et cross sections in yp and DIS
-------------------------------	---------------------------------

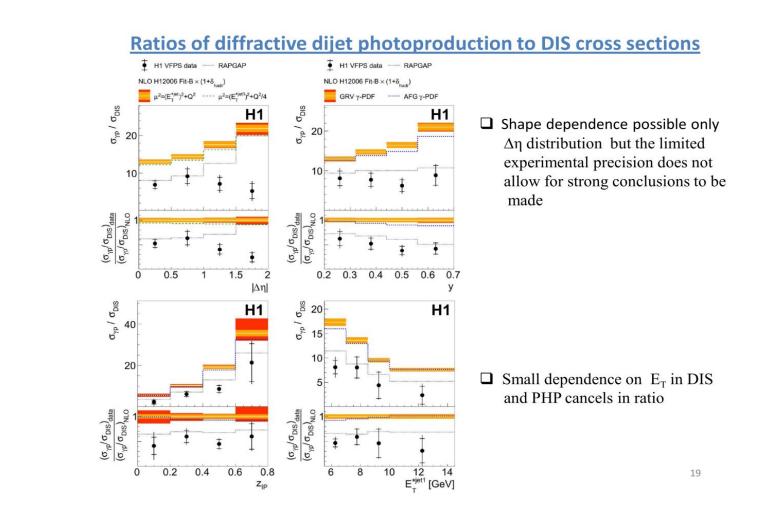
	PHP	DIS
Data [pb]	237 ±14 (stat) ±31 (syst)	30.5 ±1.6 (stat) ±2.8 (syst)
NLO QCD [pb]	430^{+172}_{-98} (scale) $^{+48}_{-61}$ (DPDF) ± 13 (hadr)	$28.3^{+11.4}_{-6.4}$ (scale) $^{+3.0}_{-4.0}$ (DPDF) ± 0.8 (hadr)
RAPGAP [pb]	180	18.0
Data/NLO	0.551 ± 0.078 (data) $^{+0.230}_{-0.149}$ (theory)	1.08 ± 0.11 (data) $^{+0.45}_{-0.29}$ (theory)

> DIS NLO prediction – NLOJET++ (checked using DISENT NLO) - needs to be corrected for dissociation effects since in this analysis the proton is detected, $M_y = m_p$.

Global correction factor applied (obtained by comparing H1 experimental results on diffractive cross sections obtained from LRG and from Forward Proton Spectrometer (FPS) EPJC71 (2011) 1578). $\sigma(M_{\rm Y} = m_{\rm P}) / \sigma(M_{\rm Y} < 1.6 \text{ GeV}) = 0.83$


→ DIS cross section consistent with NLO

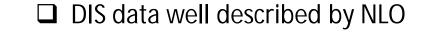

 \triangleright NLO in the γp regime uses the the FKS program


The NLO calculations for photoproduction are consistent with calculations performed by Klasen and Kramer

Scale choice: $\mu_r^2 = \mu_f^2 = \langle E_T^* \rangle^2$

 \rightarrow yp cross section off (not due to proton dissociation) by about factor of 2 – consistent with previous measurements from H1

□ New measurements of diffractive dijet production in ep DIS using two approaches:


Photoproduction suppressed by a factor ~ 0.5 (earlier measurement obtained with LRG method confirmed)

\rightarrow Suppression is not related to proton dissociation.

