

WE-Heraeus Physics School

Diffractive and electromagnetic processes at high energies

Bad Honnef, August 17 - 21, 2015

Diffraction and forward physics at HERA

S. Levonian, DESY

HERA: The World's Only ep Collider

Ultimate goal: derive (1) from (2)

- Hadronic degrees of freedom
- Validity: large $s \gg t$
- $I\!\!P$ dominates: $\alpha_{I\!\!P}(0) > \alpha_{I\!\!R}(0)$ $\rightarrow \sigma_{\text{tot}} \propto s^{\alpha_{I\!\!P}(0)-1}$
- Unitarity corrections unavoidable $(\sigma_{\text{tot}} \leq \ln^2(s/s_0) \text{ at } s \to \infty)$
- When? $s_{sat} = ?$

- Partonic degrees of freedom
- Low x: $W^2 \gg Q^2, t \ (Q^2/W^2 \simeq x \ll 1)$
- gluons dominate: $xg(x) \gg xq_{val}(x)$ $F_2(x,Q^2) \propto xg(x) \sim x^{-\lambda}$
- Saturation of the xg(x) (non-linear effects, shadowing, ...)

• $x_{sat}(Q_{sat}) = ?$

- First to be seen in diffraction: $\sigma_D \propto s^{2(\alpha-1)}$ First to be seen in diffraction: $\sigma_D \propto |xg(x)|^2$
- ⇒ Diffraction ≡ Physics of the Pomeron, ⇒ Diffraction ≡ Gluodynamics, the essence of strong interactions the essence of QCD (in high energy limit)

- Fundamental aim: understand high energy limit of QCD (gluodynamics; CGC ?)
- Novelty: for the first time probe partonic structure of diffractive exchange
- Practical motivations: study factorisation properties of diffraction; try to transport to hh scattering (e.g. predict diffractive Higgs production at LHC)

Experimental methods:

1) selecting LRG events

(60 - 220 m from IP)

2) detecting p in Roman Pots

$$x_{I\!\!P} = \xi = rac{Q^2 + M_X^2}{Q^2 + W^2}$$

(momentum fraction of colour singlet exchange)

$$eta = rac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P} = rac{x}{x_{I\!\!P}}$$

(fraction of exchange momentum, coupling to γ^*)

 $t = (p - p')^2$

(4-momentum transfer squared)

(V)FPS

- x_{IP} and t measurements
- Less statistics
- p-tagging systematics

Measure a Large Rapidity Gap

- Data integrated over |t| < 1 GeV²
- High statistics
- Contamination from proton dissociation events
 - Needs to be controlled
- Different systematics
 Different kinematic coverage

Factorisation properties in diffraction

QCD factorisation

(rigorously proven for DDIS by Collins et al.):

Regge factorisation

(conjecture, e.g. RPM by Ingelman, Schlein):

 $\sigma_r^{D(4)} \propto \sum_i \hat{\sigma}^{\gamma^*i}(x,Q^2) \otimes f_i^D(x,Q^2;x_{I\!\!P},t)$

- $\hat{\sigma}^{\gamma^* i}$ hard scattering part, same as in inclusive DIS
- f_i^D diffractive PDF's, valid at fixed $x_{I\!\!P}, t$ which obey (NLO) DGLAP

$$F_2^{D(4)}(x_{I\!\!P},t,eta,Q^2)=\Phi(x_{I\!\!P},t)\cdot F_2^{I\!\!P}(eta,Q^2)$$

• In this case shape of diffractive PDF's is independent of $x_{I\!\!P}, t$ while normalization is controlled by Regge flux $\Phi(x_{I\!\!P}, t)$

QCD based approaches to DDIS: Partons vs Dipoles

Infinite momentum frame: partons

Factorization is assumed.

$$\begin{split} F_2^D &= f_{I\!\!P}(x_{I\!\!P},t) \, F_2^{I\!\!P}(\beta,Q^2) \\ f_{I\!\!P} &= \frac{e^{bt}}{x_{I\!\!P}^{2\alpha_{I\!\!P}-1}} \end{split}$$

 Diffractive parton densities can be derived.

Resolved Pomeron model

(Ingelman, Schlein - 1985)

• Proton rest frame: dipoles

 Long-living quark pair interacts with the gluons from the proton.

$$d\sigma_{diff}^{\gamma^* p}/dt \propto \int dz dr^2 \Psi^* \sigma_{qq}^2(x, r^2, t) \Psi$$

- Direct relation to inclusive DIS.
- Incorporates saturation dynamics.
- No extra parameters for diffraction are needed.

Selected Results

Inclusive diffraction and DPDF: Pomeron under the microscope

- Diffractive dijets and QCD factorisation tests
- Vector Mesons and DVCS: soft vs hard Pomeron

Leading neutrons and $\gamma \pi^+$ cross sections

- \triangleright forward neutrons and photons and CR models
- $\,\vartriangleright\,$ inclusive neutrons in DIS and pion structure function
- \triangleright exclusive ho^0 with forward neutron in PHP

Summary and open questions

Selected Results

Inclusive diffraction and DPDF: Pomeron under the microscope

Diffractive dijets and QCD factorisation tests

Vector Mesons and DVCS: soft vs hard Pomeron

Leading neutrons and $\gamma \pi^+$ cross sections

- \triangleright forward neutrons and photons and CR models
- \triangleright inclusive neutrons in DIS and pion structure function
- arphi exclusive ho^0 with forward neutron in PHP

Summary and open questions

Inclusive diffraction in DIS

20 years of Diffraction in DIS

12

20 years of Diffraction in DIS

First observation of diffraction in DIS 1992 data, 24.7 nb⁻¹

- Compelling confirmation of the NLO QCD picture of diffraction over a wide kinematic range. Clear candidate for the textbook!
- Positive scaling violation up to large $\beta \Rightarrow$ gluon dominated $I\!\!P$

Compare to scaling violation in Inclusive NC DIS

Diffractive PDFs as determined by H1 and ZEUS

 \blacksquare DPDFs are consistent in shape, $\sim 10\%$ difference in normalisation

- \blacksquare Jets help to constrain high z gluons
- In Gluons carry $\sim (70 75)\%$ of the Pomeron momentum

Compare LRG and FPS cross sections

Ratio LRG/FPS:

 $rac{\sigma(M_Y < 1.6 {
m GeV})}{\sigma(Y=p)} = 1.203 \pm 0.019(exp) \pm 0.087(norm)$

(1.6%) (7.2%)

Experimental control on the amount of proton dissociation in LRG data

No Q^2 or β dependent differences observed

Compare H1 and ZEUS LRG data to H1 DPDF Fit B and Dipole model

Normalisation difference of $\sim 10\%$ between H1 and ZEUS – within norm. uncertainties of each experiment

Dipole model describes better low Q^2 trend

DPDF is better at higher Q^2

Final precise data challenge models

• To do: final QCD analysis of all H1 + ZEUS data (LRG and p-tagged) \Rightarrow DPDF

Diffractive dijets

QCD Factorisation holds in DIS regime (EPJ, C72, 2012)

QCD Factorisation holds in DIS regime (EPJ, C72, 2012)

However, it breaks down at Tevatron ...

QCD Factorisation holds in DIS regime (EPJ, C72, 2012)

However, it breaks down at Tevatrondue to soft remnant rescattering ($S \sim 0.15$)

QCD Factorisation holds in DIS regime (EPJ, C72, 2012)

 \Rightarrow Test it in photoproduction:

However, it breaks down at Tevatrondue to soft remnant rescattering ($S \sim 0.15$)

direct, $x_{\gamma} = 1$ (DIS-like)

resolved, $x_{\gamma} < 1$ (hadron-like)

 M^2

QCD Factorisation holds in DIS regime (EPJ, C72, 2012)

 \Rightarrow Test it in photoproduction:

direct, $x_{\gamma} = 1$ (DIS-like)

resolved, $x_{\gamma} < 1$ (hadron-like)

However, it breaks down at Tevatrondue to soft remnant rescattering ($S \sim 0.15$)

New analysis: VFPS Dijets in DIS and PHP

- ullet 2006/07 e $^+$ p data, $\mathcal{L}pprox 30(50)$ pb $^{-1}$
- Leading proton measured by VFPS
- Untagged photoproduction
 (e⁺ escapes in the beampipe)

Statistics: 3800 dijet events in PHP 550 dijet events in DIS

Data unfolded to the level of stable hadrons using *TUnfold* program

Results are compared to NLO QCD

- ullet Scales: $\mu_r^2\!=\!\mu_f^2\!=\!\langle E_{T, ext{jet}}^2
 angle+Q^2$
- DPDF H1 2006 Fit B and GRV-HO γ -PDF used
- \bullet Different scale choices and $\gamma\text{-PDF}$ studied

	Photoproduction	DIS	
Event	$Q^2 < 2 \mathrm{GeV}^2$ 4	$< Q^2 < 100 {\rm GeV}^2$	
kinematics	0.2 < y < 0.7		
Leading	$0.01 < x_{IP} < 0.024$		
proton	$ t < 0.6 {\rm GeV}^2$		
	14562	$Z_{IP} < 0.8$	
Dijets	$E_T^{\star jet1} > 5$.5GeV	
1	$E_T^{\star jet2} > 4 \mathrm{GeV}$		
	$-1 < \eta^{\text{jet1}}$	^{,2} < 2.5	

Table 1: Analysis phase space.

VFPS Dijets: Data vs NLO QCD

- DIS dijets in agreement with QCD factorisation
- Factorisation is broken in PHP $\langle S^2
 angle = 0.51 \pm 0.09$
- This is not related to p diss.
 (p tagged in VFPS)
- Independence on x_{γ} confirmed No jet E_T dependence observed

Vector Mesons and DVCS

Vector Mesons at HERA

soft **IP**omeron exchange

Vector Mesons at HERA

Exclusive VM production at HERA – a nice tool to study 'soft' vs 'hard' Pomeron regimes

Vector Mesons at HERA

Exclusive VM production at HERA – a nice tool to study 'soft' vs 'hard' Pomeron regimes

Diffractive scattering of γ at large |t| and DVCS

 $\begin{array}{ll} d\sigma/dt \sim e^{-b|t|} \rightarrow \text{diffractive peak (approximated from Bessel function)} & 1'\\ b = (R/2)^2 & \rightarrow \text{transverse size of the target (geometric picture)} \\ \hline Predictions: & b = b_0 + 4\alpha'_{I\!\!P} \ln(W/W_0);\\ & \text{soft $I\!\!P$: shrinkage of diffractive peak ($\alpha'_{I\!\!P} = 0.25$); large $b_0 \approx 10$ GeV^{-2}$\\ & \text{hard $I\!\!P$: no (or small) shrinkage ($\alpha'_{I\!\!P} < 0.1$); small $b_0 \approx 5$ GeV^{-2}$} \end{array}$

Vector Mesons at HERA: *t***-dependence**

 $d\sigma/dt \sim e^{-b|t|} \rightarrow \text{diffractive peak (approximated from Bessel function)}$ $b = (R/2)^2 \rightarrow \text{transverse size of the target (geometric picture)}$ <u>Predictions:</u> $b = b_0 + 4\alpha'_{I\!\!P} \ln(W/W_0)$; soft IP: shrinkage of diffractive peak ($\alpha'_{I\!\!P} = 0.25$); large $b_0 \approx 10 \text{ GeV}^{-2}$ hard IP: no (or small) shrinkage ($\alpha'_{I\!\!P} < 0.1$); small $b_0 \approx 5 \text{ GeV}^{-2}$

Example: shrinkage in $\gamma^* \mathrm{p} o J/\!\psi \mathrm{p}$

J(x)/x

 $exp(-x^2/8)$

 $\mathbf{X} = \mathbf{R} \sqrt{|\mathbf{t}|}$

 $Q^2 < 1 \ {
m GeV^2}:$ $lpha'_{I\!\!P} = 0.164 \pm 0.028 \pm 0.030$

 $Q^2 = 2 - 80 \text{ GeV}^2$: $lpha'_{I\!\!P} = 0.019 \pm 0.139 \pm 0.076$ $\begin{aligned} d\sigma/dt \sim e^{-b|t|} &\to \text{diffractive peak (approximated from Bessel function)} \\ b &= (R/2)^2 &\to \text{transverse size of the target (geometric picture)} \\ \underline{Predictions:} \quad b &= b_0 + 4\alpha'_{I\!\!P} \ln(W/W_0); \\ \text{soft IP: shrinkage of diffractive peak } (\alpha'_{I\!\!P} = 0.25); \text{ large } b_0 \approx 10 \text{ GeV}^{-2} \\ \text{hard IP: no (or small) shrinkage } (\alpha'_{I\!\!P} < 0.1); \\ \end{aligned}$

Gluons confinement area (0.6 fm) is smaller than the proton size (0.8 fm)

- Simultaneous unfolding of EL and PD channels
- Use high $E_p = 920$ GeV and low $E_p = 460$ GeV data thus extending $W_{\gamma p}$ range
- Both e^+e^- and $\mu^+\mu^-$ decay channels \Rightarrow cross check of systematics, better statistics
- t dependence: EL – exponential; $b_{el} = 4.9(4.3)$ GeV⁻² for HE(LE) PD – $d\sigma/dt \propto (1 + (b_{pd}/n)|t|)^{-n}$;
- Energy dependence: $\sigma \propto W^{\delta}_{\gamma p}$ $\delta_{el} = 0.67 \pm 0.03; \quad \delta_{pd} = 0.42 \pm 0.05$ (possible explanation: $S_{gap}(W) < 1$ for PD case)

- Extrapolating HERA fit describes LHCb
- Low x gluon, based on old HERA data (A. Martin et al, 2008). NLO too steep

- Extrapolating HERA fit describes LHCb
- Low x gluon, based on old HERA data (A. Martin et al, 2008). NLO too steep
- New QCD analysis (A.Martin et al, 2013) skewed $g(x, x', k_T)$, abs.corr. for LHC

Leading Neutrons at HERA

Physics with Forward Neutral Particles

HERA-I

- Similar H1 and ZEUS calorimeters, only n, located at z = 106 m from IP
- ullet $\langle A
 angle \simeq 30\%$ for $heta_n < 0.8$ mrad

HERA-II

- Improved H1 FNC: distinguish ($\langle P
 angle = 98\%$) and measure n and γ/π^0
- Preshower: $60X_0$, Main Calo: 8.9λ

• Extreme forward region in particle collisions is still poorly understood

- ▷ Theory: No (or few) firm predictions from first principles
- ▷ Experiment: Difficult to measure due to detector acceptance limitations

• Important for correct analysis of (ultra-high energy) Cosmic Rays

- \triangleright Two pieces of the puzzle:
 - Sources/Propagation (prime interest)
 - Interaction/Detection (extensive air shower)
- \triangleright To understand the former one needs good MC models for the latter

• Extreme forward region in particle collisions is still poorly understood

- ▷ Theory: No (or few) firm predictions from first principles
- ▷ Experiment: Difficult to measure due to detector acceptance limitations

• Important for correct analysis of (ultra-high energy) Cosmic Rays

- \triangleright Two pieces of the puzzle:
 - Sources/Propagation (prime interest)
 - Interaction/Detection (extensive air shower)
- > To understand the former one needs good MC models for the latter

• Current situation (from PANIC summary):

- > Recent LHC data are very valuable for CR MC tuning but still no fully consistent picture yet
- > UHECR data becomes more precise and require also better precision of hadronic interaction modelling

• Specifics of HERA

- Additional constraints for different kinematical regimes wrt hadron colliders (smaller collision energy can be "compensated" by studying scaling properties and transporting the measurements to higher energies)
- \triangleright Some observables are unique (e.g. possible extraction of $\gamma\pi$ cross sections)

 $e^{+}\binom{n}{\sqrt{}}X$

Data

 $egin{aligned} \mathcal{L} &= 131 \ {
m pb}^{-1}, \ \sqrt{s} &= 319 \ {
m GeV} \ 6 &< Q^2 &< 100 \ {
m GeV}^2 \ 70 &< W &< 245 \ {
m GeV} \ \eta_{
m lab} &> 7.9, \ x_F &= 2p_{||}^*/W > 0.1 \ \gamma : \ 83000 \ {
m ev}. \ n : \ 230000 \ {
m ev}. \end{aligned}$

MC models

- DIS: LEPTO/CDM (γ , n)
 - RAPGAP- π (**n**)
- CR: EPOS LHC SYBILL 2.1 QGSJET (3 versions)

W dependence

• (γ, n) yields are independent on W

• DIS MC overestimate photon rate by $\sim 70\%$ and describe neutrons

• CR MC overestimate photon rate by 30-40% EPOS LHC is best for n

x_F spectra vs CR MC models

 $\boldsymbol{\gamma}$

n

• None of the models describes simultaneousely γ and n

• EPOS LHC gives best shape description for γ and resonable for n

Pion structure function from LN DIS

Important to determine absorptive corrections experimentally

HERA enables us to study structure of

Proton –
$$F_2, F_L, \dots$$

Photon – g/γ
Pomeron – F_2^D, F_L^D
Pion – F_2^{π}

HERA enables us to study structure of

Proton –
$$F_2, F_L, \dots$$

Photon – g/γ
Pomeron – F_2^D, F_L^D
Pion – F_2^{π}

Here for the first time we investigate the reaction involving all these objects simultaneously:

$$\gamma + \mathbf{p} \longrightarrow \rho^0 \pi^+ \mathbf{n}$$

HERA enables us to study structure of

Proton –
$$F_2, F_L, \dots$$

Photon – g/γ
Pomeron – F_2^D, F_L^D
Pion – F_2^{π}

Here for the first time we investigate the reaction involving all these objects simultaneously:

$$\gamma + \mathbf{p} \longrightarrow \rho^0 \pi^+ \mathbf{n}$$

 $egin{aligned} Q^2 &< 2 \ {
m GeV}^2 & (\langle Q^2
angle = 0.04) \ |t'| &< 1 \ {
m GeV}^2 & (\langle |t'|
angle = 0.20) \ 0.35 &< x_L &< 0.95; \ heta_{
m n} &< 0.75 \ {
m mrad} \ p_{t,n} &< 0.2 \ {
m GeV} \ ({
m OPE}) \end{aligned}$

 $rac{\mathrm{d}^2 \sigma_{\gamma p}(W_{\gamma p}, x_L, t)}{\mathrm{d} x_L \mathrm{d} t}$

 $f_{\pi/p}(x_L,t)\,\sigma_{\gamma\pi}(W_{\gamma\pi})$

Constraining pion flux

Estimate of absorption corrections

Look into other processes. What do we see there?

Large absorption effects!

Optical Theorem: Eikonal approach: World data:

$$egin{aligned} &rac{d\sigma_{el}}{dt}\mid_{t=0}=b_{
m el}\sigma_{
m el}\propto\sigma_{
m tot}^2 & \longrightarrow r_{
m el}=(rac{b_{\gamma p}}{b_{\gamma \pi}})\cdot(\sigma_{
m tot}^{\gamma \pi}/\sigma_{
m tot}^{\gamma p})^2 \ &b=\langle R^2
angle; \ b_{12}=b_1+b_2 \ &(b_{pp}\!\simeq\!11.7,\ b_{\pi^+p}\!\simeq\!9.6,\ b_{\gamma p}\!\simeq\!9.75)~{
m GeV}^{-2} \end{aligned}$$

Unofficial private summary!

Diffraction is an important area of HERA physics landscape. It represents a complicated interplay of soft and hard phenomena.

Pomeron is a gluon dominated object. Diffractive DIS is fairly well described by both RP model and CD approach.

QCD factorisation holds in DDIS, but is broken in PHP regime. The exact mechanism still to be revealed (x_{γ} independence).

Very forward neutral particle production is still a challenge for Cosmic Ray models.

Absorptive effects in Leading Neutron production are essential both in DIS and PHP regimes. They have to be taken into account when extracting F_2^{π} from LN in DIS and for $\gamma \pi$ cross section extraction from LN in PHP. • $F_2^{D(4)}$ from HERA-II VFPS data and final DPDF determination without assumption on Regge factorisation.

Explain factorisation breaking mechanizm in PHP, in particular independence of Gap Survival Probability on x_{γ} .

• Multiscale problem: (Q^2, E_T, M_V, t) .

Where is an Odderon ?

Can one observe Glueball in a double Pomeron reaction in PHP? $\gamma p \rightarrow (I\!\!P I\!\!P) \rightarrow M_X \quad (M_X = \sqrt{x_{I\!\!P 1} x_{I\!\!P 2}} W_{\gamma p} = 2 \div 4 \text{ GeV})$

> HERA has finished, but not DIS physics. What's next? **eRHIC**? **LHeC**?

Backup Slides

Iclusive vs Diffractive DIS

Deep Inelastic Scattering (DIS)

Diffractive Scattering (DDIS)

max

Interplay of soft and hard contributions

Small dipole

Large dipole

	$ C_{\alpha} ^2$	σα	$\sigma_{tot} = \sum_{\alpha = soft}^{hard} C_{\alpha} ^2 \sigma_{\alpha}$	$\sigma_{sd} = \sum_{\alpha = soft}^{hard} C_{\alpha} ^2 \sigma_{\alpha}^2$
Hard	~1	$\sim \frac{1}{Q^2}$	$\sim \frac{1}{Q^2}$	$\sim rac{1}{Q^4}$
Soft	$\sim \frac{m_q^2}{Q^2}$	$\sim \frac{1}{m_q^2}$	$\sim \frac{1}{Q^2}$	$\sim rac{1}{m_q^2 arrho^2}$

• Regge fit to LRG cross section:

$$F_2^{D(3)}(Q^2,eta,x_{I\!\!P}) = f_{I\!\!P/p}(x_{I\!\!P})F_2^{I\!\!P}(Q^2,eta) + n_{I\!\!R}f_{I\!\!R/p}(x_{I\!\!P})F_2^{I\!\!R}(Q^2,eta)$$

$$f_{I\!\!P/p,I\!\!R/p}(x_{I\!\!P}) = \int_{t_{cut}}^{t_{min}} rac{e^{B_{I\!\!P,I\!\!R}t}}{x_{I\!\!P}^{2lpha} P,I\!\!R^{(t)-1}} dt$$

• Mean value of the Pomeron intercept:

 $lpha_{I\!\!P}(0) = 1.113 \pm 0.002 (\exp)^{+0.029}_{-0.015} (\mathrm{model})$

- No Q^2 dependence observed
- Consistent with other determinations
- Supports proton-vertex factorisation hypothesis

 $\alpha_{I\!\!P}(0)$ – consistent with 'soft $I\!\!P$ ' $\alpha'_{I\!\!P} \leq 0.1$ is typical for 'hard $I\!\!P$ '

$$lpha_{I\!\!P,I\!\!R}(t) = lpha_{I\!\!P,I\!\!R}(0) + lpha'_{I\!\!P,I\!\!R}t$$

Complicated interplay of hard and soft phenomena

LRG: $Q^2 > 25 \text{ GeV}^2$, $x_{I\!\!P} < 0.01$, $N_{\text{jet}} = 2$, $P_T^{\text{jets}} > 2 \text{ GeV}$

• using Durham jet algorithm in $\gamma^* - I\!\!P$ rest frame in exclusive mode (all objects are in jets), $y_{cut} = 0.15$.

- test the nature of the exchanged object in diffractive interactions
- reconstruct ϕ angle between lepton and jet planes

Exclusive dijets in DDIS

• $d\sigma/d\phi$ fitted in each β bin

- normalisation discrepancy of factor two (NLO large ?)
- A vs ϕ : good description by the two gluon model for $\beta > 0.3$ (i.e. towards exclusive dijets).

Exclusive ρ^0 with Forward Neutron

• Optical Theorem (plus exponential *t* dependence):

$$d\sigma_{el}/dt\mid_{t=0}=b_{
m el}\sigma_{
m el}\propto\sigma_{
m tot}^2;\,\,\Rightarrow\,\,\sigma_{
m el}\propto\sigma_{
m tot}^2/b_{
m el}$$

• Relations between elastic slopes ($b \propto \langle R^2
angle; \ b_{ij} = b_i + b_j$):

$$r_b \equiv rac{b_{12}}{b_{13}} = rac{b_1 + b_2}{b_1 + b_3} = rac{b_1 + b_2}{(b_1 + b_2) + (b_2 + b_3) - 2b_2} = rac{b_{12}}{b_{12} + b_{23} - b_{22}} = rac{1}{1 - rac{b_{22} - b_{23}}{b_{12}}}$$

• Data at $\sqrt{s} \simeq 24 \text{ GeV}$ (for $\gamma p \rightarrow \rho^0 p$ an interpolated value of $b_{\gamma p}$ is given): $b_{pp} = (11.7 \pm 0.2) \text{ GeV}^{-2}; \ b_{\pi^+ p} = (9.6 \pm 0.25) \text{ GeV}^{-2}; \ b_{\gamma p} = (9.75 \pm 0.50) \text{ GeV}^{-2}$

• Ratio
$$r_{el} (1 = \gamma, 2 = p, 3 = \pi^+)$$
:
 $r_{el} = \left(\frac{b_{\gamma p}}{b_{\gamma \pi}}\right) \cdot \left(\frac{\sigma_{\text{tot}}^{\gamma \pi}}{\sigma_{\text{tot}}^{\gamma p}}\right)^2 = \left(\frac{1}{1 - (2.1/9.75)}\right) \cdot \left(\frac{2}{3}\right)^2 = (0.57 \pm 0.03)$

• Absorption factor:

$$K_{abs} = rac{r_{el}(ext{measured})}{r_{el}(ext{estimated})} = rac{0.25 \pm 0.06}{0.57 \pm 0.03} = 0.44 \pm 0.11$$