Production of exclusive dijets in diffractive deep inelastic scattering at HERA

Leszek Adamczyk

AGH - UST Cracow

On behalf of the ZEUS Collaboration

Final results accepted by the ZEUS Collaboration

HERA ep collider 1992 －2007，DESY，Hamburg

－The world＇s only electron／positron－proton collider
－$E_{e}=27.6 \mathrm{GeV}$ and $E_{p}=820(920) \mathrm{GeV}(575,460) \mathrm{HE}(\mathrm{LE})$

－Total integrated luminosity $0.5 \mathrm{fb}^{-1}$

Diffraction in ep collisions

Deep Inelastic Scattering (DIS)

- $Q^{2}=-q^{2}$ - virtuality of the photon $Q^{2} \approx 0$ - photoproduction, $Q^{2} \gg 0$ - DIS
- W - photon-proton center-of-mass energy
- x - Bjorken x - fraction of proton's momentum carried by struck quark

Diffractive Scattering

particle flow
current jet
no colour flow
p-> beam pipe

- $x_{I P}$ - fraction of proton's momentum carried by exchanged color singlet
- $t=\left(p-p^{\prime}\right)^{2}$ - four momentum transfer squared at proton vertex
- $\beta=x / x_{\text {IP }}$ - fraction of Pomeron momentum "seen" by the photon

Exclusive dijet production in diffractive DIS

ϕ - the angle between lepton plane and jet plane

- Only dijet, scattered electron and proton in the final state
- ϕ distribution $\propto 1+A \cdot \cos 2 \phi$
- Parameter A sensitive to the nature of the object exchanged between the virtual photon and the proton

Models of $q \bar{q}$ production in diffractive DIS

Resolved-Pomeron model

- Gluon emitted from the Pomeron
- $q \bar{q}$ pair produced via Boson Gluon Fusion
- Positive A
- Cross section sensitive to the diffractive gluon distribution in the proton
- Pomeron remnant contributes to $q \bar{q}$ production

Two-Gluon-Exchange

- Virtual photon fluctuates into a $q \bar{q}$
- Two gluons from the proton couples to $q \bar{q}$ pair
- Negative A
- Cross section sensitive to the gluon distribution in the proton
- Promising reaction to probe the off-diagonal gluon distribution
- Emission of additional ğluon also contributes to $q \bar{q}$ production

MC simulation

- Diffractive sample simulated with SATRAP generator
- Two-Gluon-Exchange with color dipole model and saturation
- $q \bar{q}$ and $q \bar{q} g$ in a final state
- Hadronisation was simulated with the JETSET
- Radiative corrections taken into account with the HERACLES
- Also used for proton-dissociation process assuming the interaction at the lepton and at the proton vertex factorizes, where the intact proton was replaced with a dissociated proton.
- Used for detector level corrections
- Non-diffractive and photoproduction backgrounds were estimated based on MC predictions of ARIADNE and PYTHIA 6.2
- For the model predictions at hadron level RAPGAP generator was used where Resolved-Pomeron model (G.Ingelman and P.Schlein et al.) and Two-Gluon-Exchange (J. Bartels and H. Jung et al.) are implemented

Selection of diffractive DIS events

Jet reconstruction

ZEUS

- Durham jet algorithm in γ^{*}-Pomeron rest frame as implemented in FastJet:
- objects i, j are merged as long as

$$
k_{t}^{2}=\min \left(E_{i}^{2}, E_{j}^{2}\right) \sin ^{2}\left(\theta_{i, j}\right)<y_{\text {cut }} M_{x}^{2}
$$

- objects with the smallest separation are merged first
- each object had to be associ to a jet (exclusive mode)
- Algorithm developed for $e^{+}+e^{-} \rightarrow \gamma^{*} \rightarrow j e t s$
- Better performances than other algorithms developed for inclusive lepton-hadron or hadron-hadron processes

Jet selection

- Jets were reconstructed with a resolution parameter $y_{\text {cut }}=0.15$
- Select two hard jets $p_{t}>2 \mathrm{GeV}$ to allow comparison to pQCD models ZEUS

Transverse energy flow around jet

Reference jet with positive Z-component of the momentum

 ZEUSZEUS

Distributions well reproduced by the SATRAP MC

Dijet production with proton dissociation

$e+p \rightarrow e+$ jet $1+$ jet $2+Y \quad M_{Y}$ - mass of the proton dissociated system

- Fine tuning of the p -diss MC with enriched in p-diss sample:
- only particles with $\eta<2$ were used to reconstruct jets and kinematical variables
- events with particles in the range $2<\eta<3.5$ were rejected
- remaining sample with particles in the range $\eta>3.5$ consisted almost entirely of diffractive dijets with a detected p-diss system.

$$
\frac{\mathrm{d} \sigma_{\gamma p \rightarrow \mathrm{jet} 1+\mathrm{jet} 2+Y}}{\mathrm{~d} M_{Y}^{2}}=\frac{1}{M_{Y}^{1.4 \pm 0.6}}
$$

- fraction of p-diss was determined by a fit to the distribution of $\eta_{\text {max }}$
$f_{\text {pdiss }}=45 \% \pm 4 \%$ (stat. $) \pm 15 \%$ (syst.)
- uncertainty is model independent. The similar central value was obtained for other diffractive processes or assuming that $\sigma_{\mathrm{el}} / \sigma_{\mathrm{p}-\text { diss }} \approx 1$

Unfolding of hadron level cross sections

- Hadron level cross sections were unfolded as a function of β and ϕ in the kinematical region
- $Q^{2}>25 \mathrm{GeV}^{2}$
- $90<W<250 \mathrm{GeV}$
- $x_{I P}<0.01$
- $M_{X}>5 \mathrm{GeV}$
- $N_{j e t s}=2$ (with $y_{\text {cut }}=0.15$)
- $p_{T ; j e t}>2 \mathrm{GeV}$.
- Two-dimensional unfolding in $\phi-p_{T ; j e t}$ or $\beta-p_{T ; j e t}$ space
- The response matrix was based on the weighted SATRAP MC simulation
- Unfolding done using Singular Value Decomposition as implemented in the TSVDUnfold package

Differential cross sections

ZEUS

- ϕ distribution well described by theoretically predicted:

$$
1+A \cos 2 \phi
$$

- Fits include the full statistical covariance matrix and the systematic uncertainties using the profile method

Shape of ϕ distribution vs. β

- $1+A \cos 2 \phi$

ZEUS

- A decreases with increasing β and changes sign around $\beta=0.4$

Model predictions

- Hadron-level model predictions were obtained by MC simulation
- The hadronisation was simulated with was simulated with color dipole model as implemented in ARIADNE
- The generated events do not include proton dissociation

Resolved-Pomeron model

Two-Gluon-Exchange model

- Prediction based on diffractive gluon density obtained from fits (H1 2006 fits A and B) to H1 data
- The shape of the ϕ distribution is essentially identical in all models based on the BGF process (Resolved-Pomeron and the Soft Colour Interactions)
- Prediction based on GRV parameterisation of the gluon density
- The $q \bar{q} g$ final state is sensitive to the parton-level cut $p_{T, \text { cut }}$
- Consequence of the fact that two of the partons form a single jet.

$q \bar{q}$ dijet component in the Two-Gluon-Exchange model

- ϕ distributions predicted for $q \bar{q}$ and $q \bar{q} g$ have different shapes
- Ratio $R_{q \bar{q}}=\sigma(q \bar{q}) /(\sigma(q \bar{q})+\sigma(q \bar{q} g))$ can be determined by studying the measured ϕ distributions.
- Predicted $R_{q \bar{q}}$ by the model depends on the applied $p_{T, \text { cut }}$ ZEUS

- The $p_{T, \text { cut }}$ value of $\sqrt{2} \mathrm{GeV}$ used in the original calculation significantly underestimates the ratio.
- The measured ratio can be well described with $p_{T, \text { cut }}=1.75 \mathrm{GeV}$

Comparison to model predictions $\mathrm{d} \sigma / \mathrm{d} \beta$

 β

Two-Gluon-Exchange model

- Prediction describes the shape of the β distribution reasonably well
- Large difference in normalization could indicate that the NLO corrections are large or effect of the off-diagonal gluon distribution is significant
- However large uncertainty due to the p-diss subtraction make the difference not significant

Boxes correspond to statistical uncertainty only

Comparison to model predictions $1+A \cos 2 \phi$

ZEUS

Resolved-Pomeron model

- Almost constant, positive value of A in the whole β range

Two-Gluon-Exchange model

- Value of A varies from positive to negative
- Model agrees quantitatively with the data in the range $0.3<\beta<0.7$

Boxes correspond to statistical uncertainty only

Summary

- The first measurement of diffractive production of exclusive dijets in DIS was presented
- The measured absolute cross sections are larger than those predicted by both the Resolved-Pomeron and the Two-Gluon-Exchange models
- The difference between the data and the Resolved-Pomeron model at $\beta>0.4$ is significant
- The Two-Gluon-Exchange model predictions agree with the data within the experimental uncertainty and are themselves subject to possible large theoretical uncertainties
- The shape of the ϕ distributions was parameterised as motivated by theory by $1+A \cos 2 \phi$
- The Two-Gluon-Exchange model predicts reasonably well the measured value of A as a function of β

