

QCD Analysis HERAPDF2.0 of the combined HERA structure function data

on behalf of H1 and ZEUS collaborations

> DIS2015 Dallas, Texas 2015

PDFs for the precision measurements

Factorisation theorem: PDFs + hard-scattering cross section

$$\sigma_{A \to C}^{i}(q, p) = \sum_{a} \int_{x}^{1} d\xi f_{A}^{a}(\xi, \mu) \hat{\sigma}_{a \to C}^{i}(q, \xi p, \mu, \alpha_{s})$$

PDFs are universal => essential for precision measurements.

HERA data is a core of every PDF determination.

Probes linear combination of quarks.

Sensitive to the quark flavor decomposition (CC).

Information on the gluon content of proton

Covers wide kinematic range

Full HERA data combination

HERAPDF1.0 HERAPDF1.5 HERAPDF2.0

[Data Set		x _{Bi} (Grid	Q^2 [GeV	V ²] Grid	L	e ⁺ /e ⁻	\sqrt{s}
			from	to	from	to	pb-1		GeV
1	HERA I $E_p = 820 \text{GeV}$	and $E_p =$	920 GeV data	sets					
I	H1 svx-mb	95-00	0.000005	0.02	0.2	12	2.1	e ⁺ p	301, 319
	H1 low Q^2	96-00	0.0002	0.1	12	150	22	e^+p	301, 319
	H1 NC	94-97	0.0032	0.65	150	30000	35.6	e^+p	301
	H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301
	H1 NC	98-99	0.0032	0.65	150	30000	16.4	e ⁻ p	319
	H1 CC	98-99	0.013	0.40	300	15000	16.4	e- p	319
	H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e ⁻ p	319
	H1 NC	99-00	0.0013	0.65	100	30000	65.2	e ⁺ p	319
	H1 CC	99-00	0.013	0.40	300	15000	65.2	e ⁺ p	319
1	ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e ⁺ p	300
	ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300
	ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e ⁺ p	300
	ZEUS NC	96-97	0.00006	0.65	2.7	30000	30.0	e^+p	300
	ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e ⁺ p	300
	ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e ⁻ p	318
	ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e ⁻ p	318
	ZEUS NC	99-0 0	0.005	0.65	200	30000	63.2	e^+p	318
J	ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e+ p	318
l	HERA II $E_p = 920 \text{ GeV}$ data sets								
	HI NC ^{1.5p}	03-07	0.0008	0.65	60	30000	182	e^+p	319
	H1 CC ^{1.5} <i>p</i>	03-07	0.008	0.40	300	15000	182	e^+p	319
	H1 NC ^{1.5} <i>p</i>	03-07	0.0008	0.65	60	50000	151.7	e ⁻ p	319
	H1 CC ^{1.5p}	03-07	0.008	0.40	300	30000	151.7	e ⁻ p	319
	H1 NC med $Q^2 * y.5$	03-07	0.0000986	0.005	8.5	90	97.6	e^+p	319
	H1 NC low $Q^2 * y.5$	03-07	0.000029	0.00032	2.5	12	5.9	e^+p	319
1	ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e ⁺ p	318
	ZEUS CC 1.5p	06-07	0.0078	0.42	280	30000	132	e+ p	318
	ZEUS NC ^{-1.5}	05-06	0.005	0.65	200	30000	169.9	e ⁻ p	318
	ZEUS CC ^{-1.5}	04-06	0.015	0.65	280	30000	175	e ⁻ p	318
	ZEUS NC nominal *9	06-07	0.000092	0.008343	7	110	44.5	e^+p	318
	ZEUS NC satellite *9	06-07	0.000071	0.008343	5	110	44.5	e^+p	318
I	HERA II $E_p = 575 \text{ GeV}$ data sets								
1	H1 NC high Q^2	07	0.00065	0.65	35	800	5.4	e ⁺ p	252
	H1 NC low Q^2	07	0.0000279	0.0148	1.5	90	5.9	e^+p	252
1	ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e ⁺ p	251
	ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	e^+p	251
1	HERA II $E_p = 460 \text{ GeV}$	$(ERA II E_p = 460 \text{ GeV} \text{ data sets})$							
1	H1 NC high Q^2	07	0.00081	0.65	35	800	11.8	e ⁺ p	225
	H1 NC low Q^2	07	0.0000348	0.0148	1.5	90	12.2	e^+p	225
	ZEUS NC nominal	07	0.000184	0.016686	7	110	13.9	e ⁺ p	225
	ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	e^+p	225
1								1	

(See talk by K. Wichmann)

3 / 22

CC high Q², x_{Bi}: HERAPDF 1.0 vs 2.0

Significantly more data since HERAPDF1.0.

Improved precision of data and predictions!

EW effects: HERAPDF 1.0 vs 2.0

Volodymyr Myronenko | H1 and ZEUS | DIS 2014 — Dallas, Texas | QCD Analysis HERAPDF2.0 of the combined HERA data 5 / 22

HERAPDF2.0: settings for QCD fit

The fit is performed using the HERA data only.

QCD fits are performed using HERAFitter package www.herafitter.org (See talk by R. Placakyte)

PDFs (14p) are parametrised at $Q_0^2 = 1.9 \text{ GeV}^2$

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$

 $xg(x), xu_{y}(x), xd_{y}(x), x\overline{U}(x), x\overline{D}(x)$

HERAFitter

PDF evolution is performed using DGLAP equations

Heavy flavour coefficients are obtained within GM VFNS (RT OPT)

Charm and beauty mass parameters

Volodymyr Myronenko | H1 and ZEUS | DIS 2014 — Dallas, Texas | QCD Analysis HERAPDF2.0 of the combined HERA data 7 / 22

HERAPDF2.0: errors estimation

Parametrisation uncertainties:

- The largest deviation taken.

- Full systematic correlation treatment.
- Experimental uncertainties:
 - Hessian method used: full second-derivative matrix calculated

- Conventional $\Delta \chi^2 = 1 => 68\%$ CL

Model uncertainties:

- All variations are added in quadratures, separately positive and negative.

Variation	Standard Value	Lower Limit	Upper Limit					
$Q_{\rm min}^2$ [GeV ²]	3.5	2.5	5.0					
$Q_{\rm min}^2$ [GeV ²] HiQ2	10.0	7.5	12.5					
$M_c(\text{NLO})$ [GeV]	1.47	1.41	1.53					
M_c (NNLO) [GeV]	1.43	1.37	1.49					
M_b [GeV]	4.5	4.25	4.75					
f_s	0.4	0.3	0.5					
μ_{f_0} [GeV]	1.9	1.6	2.2					
Adding D and E parameters to each PDF								

HERAPDF2.0 at NLO and NNLO

The PDF sets in GM VFNS presented at various orders of calculations.

Variants with alternative gluon parametrisation are provided.

HERAPDF2.0 at LO

Parton densities @LO are presented.

Essential for parton showers simulation in LO+PS Monte Carlo event generators

Volodymyr Myronenko | H1 and ZEUS | DIS 2014 — Dallas, Texas | QCD Analysis HERAPDF2.0 of the combined HERA data 10 / 22

HERAPDF1.0 vs HERAPDF2.0

Valence distributions are more peaked at HERAPDF2.0 (new data).
 High x sea is softer whereas gulon is harder at HERAPDF2.0.
 Smaller uncertainties at high x.

Volodymyr Myronenko | H1 and ZEUS | DIS 2014 — Dallas, Texas | QCD Analysis HERAPDF2.0 of the combined HERA data 11 / 22

HERAPDF1.5 vs HERAPDF2.0

Low x gluon uncertainty is smaller for HERAPDF2.0.

HERAPDF2.0 vs available PDFs

HERAPDF2.0: Q²_{min} dependence

HERAPDF2.0 vs HERAPDF2.0HiQ2

Larger uncertainty for HERAPDF2.0HiQ2 gluon at low x.

PDFs become very alike at higher scales.

HERAPDF2.0: dependence on F₁ order

H1 and ZEUS

Treating of F_{L} to the same order in α_{s} as F_{2} gives better results at NLO. Almost independent of HF scheme.

Volodymyr Myronenko | H1 and ZEUS | DIS 2014 — Dallas, Texas | QCD Analysis HERAPDF2.0 of the combined HERA data 16 / 22

HERAPDF2.0 FF3A and FF3B

 \Rightarrow Deferences in gluons between RTOPT and FF \rightarrow different F₁ orders in α_s .

HERAPDF2.0: NLO vs NNLO fits

Valence distributions look similar.

Gluons are a bit shifted.

Scaling violation

NLO and NNLO predictions are similar

Volodymyr Myronenko | H1 and ZEUS | DIS 2014 — Dallas, Texas | QCD Analysis HERAPDF2.0 of the combined HERA data 19 / 22

Helicity effects in CC interactions

Electroweak unification

Summary

HERAPDF2.0 fits are performed using combined HERAI+II data.

Adding new HERA II data improves PDFs precision.

```
PDFs are extracted in GM VFNS and
FF (A and B).
```

Distributions with alternative gluon parametrisation are extracted.

HERAPDF2.0Jets obtained using Incl. + Jets + Charm data. (see talk by G. Brandt)

Backup

HERA collider

Volodymyr Myronenko | H1 and ZEUS | DIS 2014 — Dallas, Texas | QCD Analysis HERAPDF2.0 of the combined HERA data 24 / 22

HERAPDF2.0: settings for QCD fit

- QCD fits are performed using HERAFitter package
- PDFs (14p) are parametrised at $Q_0^2 = 1.9 \text{ GeV}^2$

$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}} \left(1+D_{\overline{U}} x\right), \\ x\overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}}. \end{aligned}$$

 $\stackrel{\bullet}{\bullet} A_{u_v}, A_{d_v}, A_g \text{ are constrained by QCD sum rules}$ $\stackrel{\bullet}{\bullet} x \overline{u} \stackrel{x \to 0}{\to} x \overline{d} \qquad \stackrel{\bullet}{\bullet} A_{\overline{U}}, A_{\overline{D}} \text{ are constrained via } x \overline{s} = f_s x \overline{D}$

PDF evolution is performed using DGLAP equations

Heavy flavour coeffitients are obtained within GM VFNS (RT OPT)

$$\chi^{2} = \sum_{i} \frac{\left[\mu_{i} - m_{i}\left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)\right]^{2}}{\delta_{i, uncor}^{2} m_{i}^{2} + \delta_{i, stat}^{2} \mu_{i} m_{i}\left(1 - \sum_{j} \gamma_{j}^{i} b_{j}\right)} + \sum_{j} b_{j}^{2} + \sum_{i} \ln \frac{\delta_{i, uncor}^{2} m_{i}^{2} + \delta_{i, stat}^{2} \mu_{i} m_{i}}{\delta_{i, uncor}^{2} \mu_{i}^{2} + \delta_{i, stat}^{2} \mu_{i}^{2}}$$

Volodymyr Myronenko | H1 and ZEUS | DIS 2014 — Dallas

NNLO: NC low Q², x

FF3A and FF3B

🔶 FF3A

- Three flavour running of α_s ;
- \Rightarrow F₁ calculated to $O(\alpha_s^2)$;
- Pole masses for charm and beauty.

🔶 FF3B

- Variable-flavour running of α_s ;
- F_L calculated to $O(\alpha_s)$;
- MSbar running masses for charm and beauty.