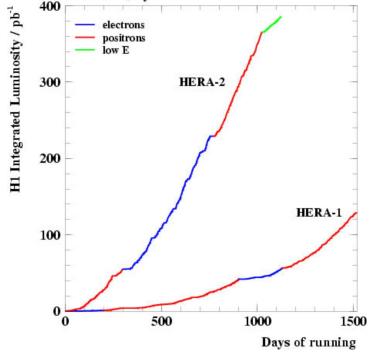


Measurement of Multijet Production in *ep* Collisions at High Q^2 and Determination of the Strong Coupling α_{s}

Eur. Phys. J. C75 (2015) 2, 65



Introduction

HERA was the worlds only $e^{t}p$ collider

e[±](27.5 GeV), **p**(460-920 GeV) centre of mass energy: \sqrt{s} = 225-318 GeV

Status: 1-July-2007

Two running periods:

1994-2000: HERA I data 2003-2007: HERA II data

Two collider experiments: **H1** and **ZEUS** ~**0.5 fb⁻¹** of luminosity recorded by each experiment

Deep Inelastic Scattering (DIS)

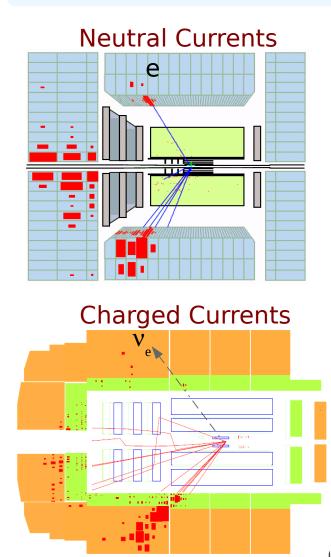
Deep Inelastic Scattering (DIS) at HERA

 \rightarrow provides unique opportunity to study the structure of the proton

Neutral Current (NC): $ep \rightarrow eX$ Charged Current (CC): $ep \rightarrow vX$

Kinematics:

- Q^2 virtuality of exchanged boson
- x Bjorken scaling variable
- y inelasticity


 $Q^2 = sxy$ (\sqrt{s} centre-of-mass energy)

Cross section: a convolution of the PDFs and perturbatively calculable hard-scattering coefficients

$$\sigma=\hat{\sigma}\otimes\mathsf{PDF}$$

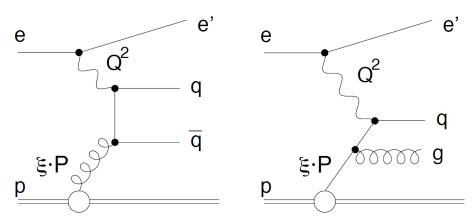
ep Scattering at HERA

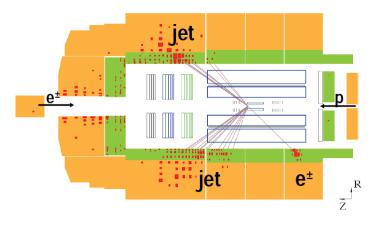
DIS Neutral and Charged Current cross sections:

$$\frac{d^2 \sigma_{NC}^{e^{\pm} p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \Big[Y_+ \tilde{F}_2^{\pm} \mp Y_- x \tilde{F}_3^{\pm} - y^2 \tilde{F}_L^{\pm} \Big]$$
dominant contribution
important at high Q²

$$Y_+ = 1 \pm (1-y)^2$$
sizable at high y

LO:
$$F_2 \approx x \sum e_q^2 (q + \overline{q})$$
 (in NLO $(\alpha_s g)$ appears)
 $xF_3 \approx x \sum 2e_q a_q (q - \overline{q})$


In LO e^+/e^- charged current cross sections are sensitive to different quark densities:

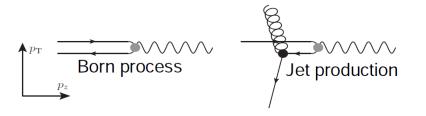

$$e^+: \quad \tilde{\sigma}_{CC}^{e^+p} = x[\overline{u} + \overline{c}] + (1-y)^2 x[d+s]$$

$$e^-: \quad \tilde{\sigma}_{CC}^{e^-p} = x[u+c] + (1-y)^2 x[\overline{d}+\overline{s}]$$

Jet production in NC DIS

Jet production in leading order pQCD:

boson-gluon fusion


QCD Compton scattering

<u>Jet reconstruction:</u> k_t and anti- k_t algorithms

proton's longitudinal momentum fraction $\xi = x(1 + M_{12}^2/Q^2)$

H1 measurements performed in *Breit frame*

 \rightarrow virtual boson collides head on with a parton form the proton

Inclusive jets: measure transverse momentum $P_{\rm T}^{\rm jet}$

Dijet and trijets: average of two/three leading jets

 $\langle P_{\rm T} \rangle_2 = \frac{1}{2} (P_{\rm T}^{\rm jet1} + P_{\rm T}^{\rm jet2})$

Multijet Production at High Q²

Simultaneous measurement (351 pb⁻¹) of:

→ inclusive jet, dijet and trijet cross sections

and

→ normalized inclusive jet, dijet and trijet cross sections

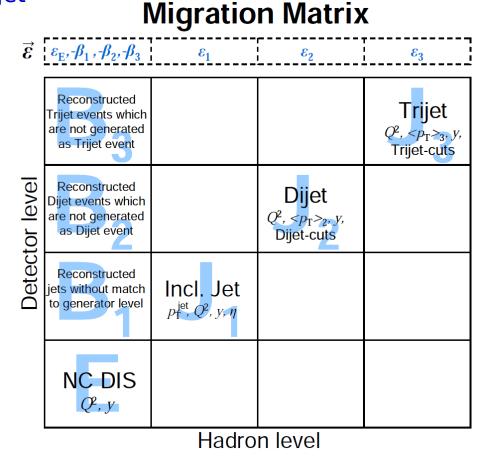
normalization w.r.t. inclusive NC DIS (partial cancellation of experimental uncertainties)

	Extended analysis phase space	Measurement phase space for jet cross sections
NC DIS phase space	$100 < Q^2 < 40000{ m GeV^2}$	$150 < Q^2 < 15000{ m GeV}^2$
	0.08 < y < 0.7	0.2 < y < 0.7
Jet polar angular range	$-1.5 < \eta_{ m lab}^{ m jet} < 2.75$	$-1.0 < \eta_{\rm lab}^{\rm jet} < 2.5$
Inclusive jets	$P_{\rm T}^{\rm jet} > 3 { m GeV}$	$7 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$
Dijets and trijets	$3 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$	$5 < P_{\mathrm{T}}^{\mathrm{jet}} < 50 \mathrm{GeV}$
		$M_{12} > 16 \mathrm{GeV}$

Note: the extended phase space is used to quantify migration effect in this way improving the precision of the measurement

Multijets at High Q²: Measurement Procedure

Jet cross sections obtained using a regularised unfolding procedure


Multidimensional Regularised Unfolding:

4 double-differential measurements unfolded simultaneously

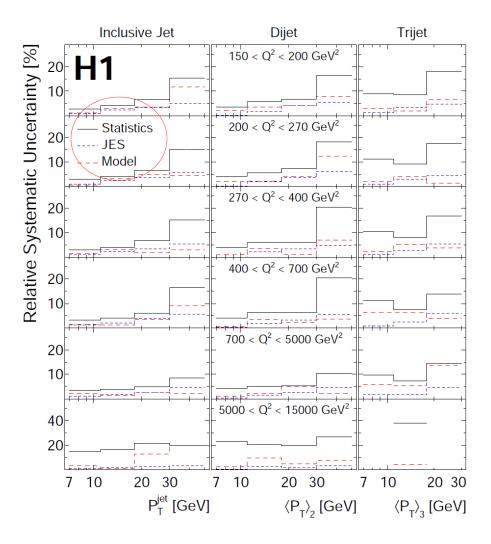
 \rightarrow NC DIS, inclusive jet, dijet and trijet

Using TUnfold tool

- \rightarrow statistical correlations considered
- \rightarrow enlarged phase space for migrations
- → up to 7 observables are considered for migrations

Multijets at High Q²: Uncertainties

Main experimental uncertainties of the measurement:


 \rightarrow improved electron calibration and the energy flow algorithm

- Hadronic Final State (HFS):
 → jet energy scale and
 - \rightarrow energy of HFS 1% (up to 4% for trijets)
- model uncertainty
 - → taking into account differences in migration matrices between data and theory (Django, Rapgap)

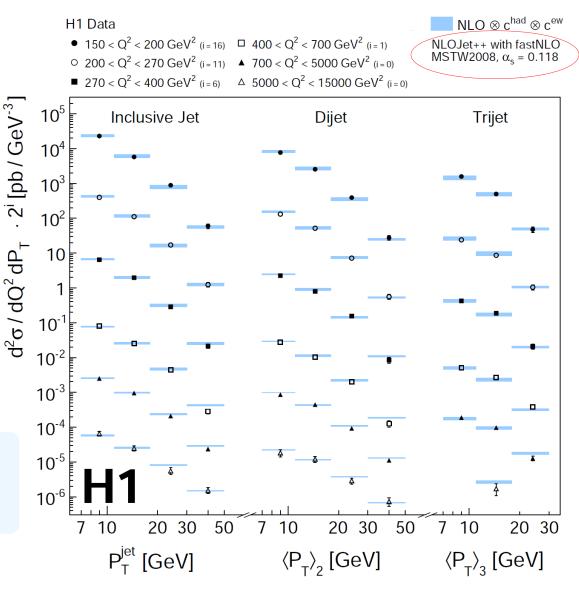
 $\delta^{\text{Model}} = \pm \sqrt{\frac{1}{2} \left(\max \left(\delta_{\text{d,R}}^{\text{Model}}, \delta_{\text{p,R}}^{\text{Model}} \right)^2 + \max \left(\delta_{\text{d,D}}^{\text{Model}}, \delta_{\text{p,D}}^{\text{Model}} \right)^2 \right)}$

- E of scattered electron (0.5 2%) and identification (0.5 2%)
- luminosity (2.5%)

• etc

Multijets at High Q²: Cross Sections

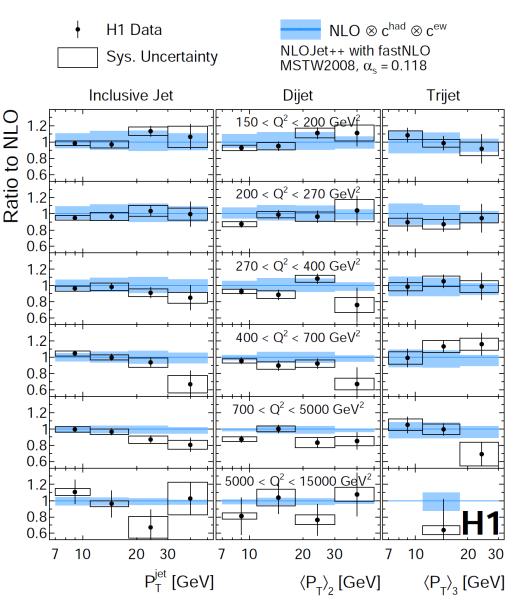
Theory (NLO) calculations:


NLOJet++ corrected for hadronisation and electroweak effects

scale choice:

 $\mu_f = Q^2$ $\mu_r = (Q^2 + P_T)/2$

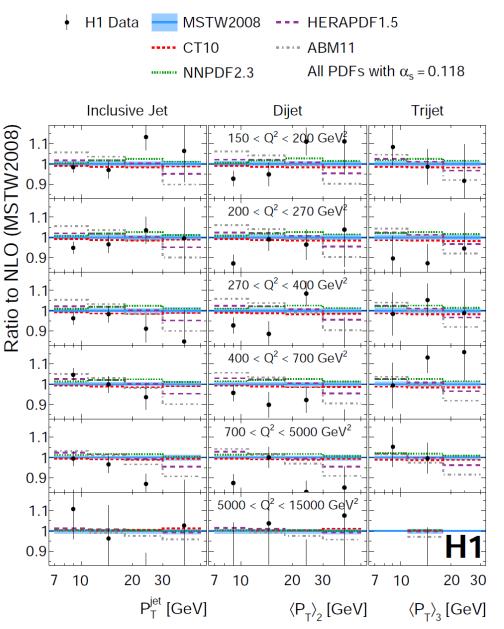
Theory uncertainty obtained by varying scales by factor 2


→ good description of the measured double-differential jet cross sections

Multijets at High Q²: Cross Sections

Ratio of jet cross sections to NLO predictions as function of Q^2 and P_{τ}

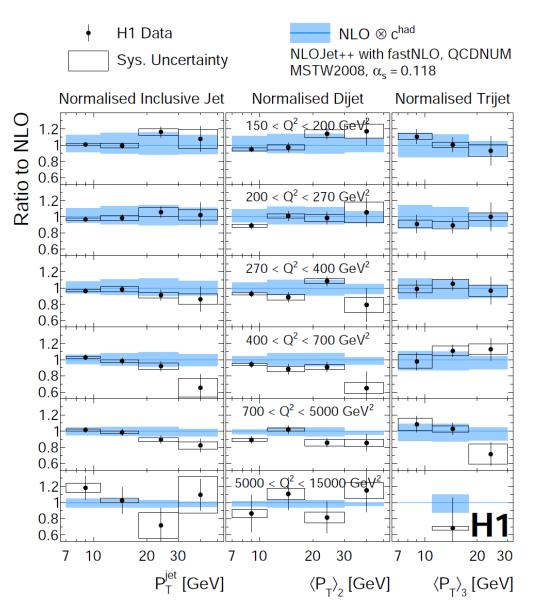
→ precision of the jet data is better than that of the theory calculations



Multijets at High Q²: Cross Sections

Ratio of NLO predictions with **various PDF** sets to MSTW2008 as function of Q^2 and P_{τ}

→ small differences observed between predictions for different choices of PDF sets


(compared to the theory uncertainty from scale variations)

Multijets at High Q²: Normalised Cross Sections

Ratio of normalised jet cross sections to NLO predictions as function of Q^2 and P_{τ}

- → experimental systematic uncertainties are reduced
- → precision of the jet data is better than that of the theory calculations

Extraction of Strong Coupling Constant α_{s}

Iterative χ^2 minimisation procedure is used to extract α_{c}

 \rightarrow fit theory (t) to data (m) taking statistical correlations into account:

$$\chi^2 = \vec{p}^{\mathrm{T}} V^{-1} \vec{p} + \sum_{k}^{N_{\mathrm{sys}}} \varepsilon_k^2$$
 with $p_i = \log m_i - \log t_i - \sum_{k}^{N_{\mathrm{sys}}} E_{i,k}$

 $\alpha_{s}(M_{z})$ and ϵ are free parameters in the fit

Uncertainties δ of *m* are considered as log-normal distributed with:

$$E_{i,k} = \sqrt{f_k^C} \left(\frac{\delta_{m,i}^{k,+} - \delta_{m,i}^{k,-}}{2} \varepsilon_k + \frac{\delta_{m,i}^{k,+} + \delta_{m,i}^{k,-}}{2} \varepsilon_k^2 \right)$$

nuisance parameters ε_k for each source of systematic uncertainty k are free parameters

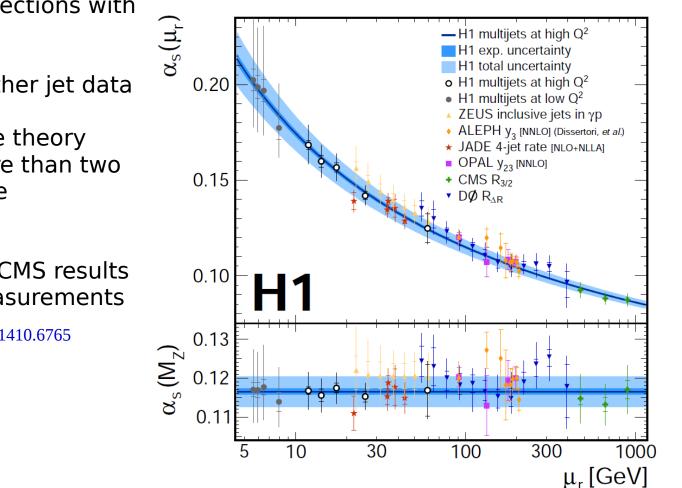
→ consistent treatment of all measurement uncertainties

Extraction of Strong Coupling Constant α_{s} : Results

Jet cross sections are directly sensitive to α_{s}

The best experimental precision on α_s is obtained from a fit to normalised multijet cross sections:

 $\begin{aligned} \alpha_s(M_Z)|_{k_{\rm T}} &= 0.1165 \ (8)_{\rm exp} \ (5)_{\rm PDF} \ (7)_{\rm PDFset} \ (3)_{\rm PDF(\alpha_s)} \ (8)_{\rm had} \ (36)_{\mu_r} \\ &= 0.1165 \ (8)_{\rm exp} \ (38)_{\rm pdf, theo} \ . \end{aligned}$

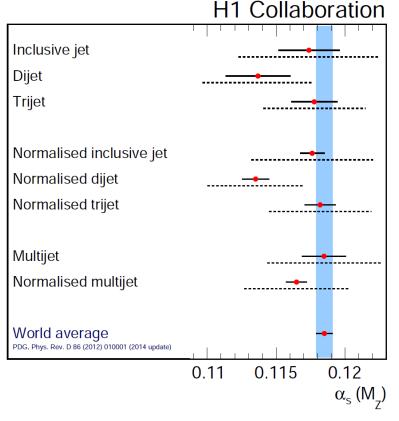

Experimental uncertainty significantly smaller than theoretical one \rightarrow higher order calculations mandatory \rightarrow value consistent with value extracted using anti- k_{t} jets

The most precise value of $\alpha_{c}(M_{7})$ from jet cross sections

 \rightarrow can be used in PDF fit together with inclusive data

Extraction of Strong Coupling Constant α_{s} : Results

Determination of α_{s} at various scales (running)


- \rightarrow H1 multijet cross sections with superior precision
- \rightarrow consistency with other jet data
- → agreement with the theory prediction over more than two orders of magnitude
- → better than recent CMS results on inclusive jet measurements

arXiv:1410.6765 arXiv:1410.6765

Extraction of Strong Coupling Constant α_{s} : Results

Comparison of α_s values extracted from different jet measurements (separately and simultaneously) H1 Collabora

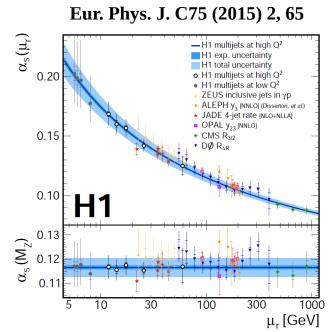
- → compared to the world average value of $\alpha_s(M_z)$
- → values consistent within total uncertainties

→ value of $\alpha_s(M_z)$ from dijet cross sections is smaller than from inclusive jet or trijets

(most likely attributed to higher order contributions in phase space regions which are different in the dijet and the inclusive jet measurement)

Summary

New QCD results from H1 were presented


Multijet (inclusive, dijet and trijet) cross sections in DIS

→ final results with superior experimental precision (supersede previously published H1 measurements)

used to determine the strong coupling constant α_s

- \rightarrow obtained value is consistent with the world average
- → most precise value from jet cross sections!

THANK YOU

Back-up slides