

Measurement of D* photoproduction at three different centre-of-mass energies at HERA

Matthew Wing (UCL/DESY/Univ. Hamburg) on behalf of the ZEUS Collaboration

- Motivation and HERA and running
- Reconstruction of D* mesons
- Energy dependence of *D** cross sections
- Summary

See: ZEUS Coll., JHEP **10** (2014) 003.

[•]UCL

е

p

Motivation

- Charm production is a rich testing ground for perturbative QCD.
 - Expect reliable predictions as charm mass provides hard scale.
 - Production at HERA dominated by boson-gluon fusion.
 - Hence sensitivity to gluon density in proton.
- Previously measured charm production at a single *ep* centre-of-mass energy.
 - Now measure dependence of charm production on *ep* centre-of-mass energy.
 - Sensitive to gluon distribution in proton as different values of *x* are proved.

- Normalise to highest energy measurement leading to cancellation of systematic uncertainties in data and theory.

HERA and running

Bulk of *ep* running at HERA at $E_p = 920 \text{ GeV}$, but other data taken with $E_e = 27.5 \text{ GeV}$ kept constant:

- Low-energy run (LER) $E_p = 460 \text{ GeV}, \sqrt{s} = 225 \text{ GeV}$

• High-energy run (HER) $E_{\rho} = 920 \text{ GeV}, \sqrt{s} = 318 \text{ GeV}$ • Medium-energy run (MER) $E_p = 575 \text{ GeV}, \sqrt{s} = 251 \text{ GeV}$

3

Data selection

Select *D** mesons in golden decay channel:

 $D^{*+} \rightarrow D^0 + \pi_s^+ \rightarrow (K^- \pi^+) + \pi_s^+ (+c.c.)$

With transverse momentum, $1.9 p_T(D^*) < 20 \text{ GeV}$ and pseudorapidity, $|\eta(D^*)| < 1.6$

Choose photoproduction events with photon virtuality, $Q^2 < 1 \text{ GeV}^2$ and photon–proton centre-of-mass energies ($W^2 = y \cdot s$),

 $130 < W_{HER} < 285 \text{ GeV}$ $103 < W_{MER} < 225 \text{ GeV}$ i.e. the same region in *y*, 0.167 < *y* < 0.802 $92 < W_{LER} < 201 \text{ GeV}$

Use ZEUS 2006–7 data where we have different centre-of-mass energy data under the same detector conditions.

5

D* signal for HER data

- Background estimation obtained by simultaneous fit to correct-sign and wrong-sign distributions for $\Delta M < 0.168 \text{ GeV}.$
- Fit done with Granet function for wrong-sign, $G(x) = A x^B e^{-Cx}$; $x = \Delta M m_{\pi}$.
- And G' = D G(x) for correct-sign.
- Correct-sign background estimate subtracted from number of candidates for 0.143 < ΔM < 0.148 GeV.
- Clear D* signal with low background.


```
HER data:
• L = 144 pb<sup>-1</sup>
• N = 12256 ± 191
```


D* signals for MER and LER data

Clear signals, with relatively low background in both running periods.

Control plots for HER

ZEUS

Reasonable description of the data by PYTHIA; can use for correction to cross section.

Reasonable description of the data by PYTHIA; can use for correction to cross section.

Control plots for LER ZEUS N(D*) N(D*) -1.5 -0.5 0.5 1.5 -1 $p_{\tau}^{D^{\star}}$ (GeV) η^{D^*} N(D*) ZEUS 13.4 pb^{-1} ($\sqrt{s} = 225$ GeV) **PYTHIA** 0 W_{JB} (GeV)

Reasonable description of the data by PYTHIA; can use for correction to cross section.

Measurement of D* cross sections

$$\sigma_{\rm vis} = \frac{N_{\rm data}^{D^*}}{\mathcal{A} \cdot BR \cdot \mathcal{L}},$$

 $R_{\sigma}^{\mathrm{HER,MER,LER}} = \sigma_{\mathrm{vis}}^{\mathrm{HER,MER,LER}} / \sigma_{\mathrm{vis}}^{\mathrm{HER}}.$

- Kinematic range:
- $Q^2 < 1 \ GeV^2$
- 0.167 < y < 0.802
- 1.9 рт(D*) < 20 GeV
- $|\eta(D^*)| < 1.6$

- N is number of D* mesons
- *A* is the acceptance
- BR is the branching fraction
- \mathcal{L} is the luminosity

Total systematic uncertainty on data about ± 5 %, dominated by reweighting of MC and background determination.

However significant reduction as calculating normalised cross sections.

NLO QCD predictions

Calculations for charm production uses a fixed-flavour number scheme at NLO QCD from Frixione et al.

- Number of active flavours fixed: *u*, *d*, *s* and *g* included in the proton PDFs.
- Heavy quarks produced in the hard interaction.
- Expected to be reliable for scale around ~ $m_{c.}$

Parameters and variations:

• Renormalisation and factorisation scales, $\mu = \sqrt{(m_c^2 + p_T^2)}$; changed independently to 0.5 and 2 times this value.

- Charm mass, $m_c = 1.5 \text{ GeV}$; changed to 1.35 and 1.65 GeV.
- Proton PDF ZEUS-S FFNS, photon PDF GRV-G HO; proton PDF changed to ABM11.
- Peterson fragmentation with $\varepsilon = 0.079$; changed to 0.006 and 0.092.
- Strong coupling, $\alpha_s = 0.118$ for five flavours.

Uncertainty dominated by scale changes, but still only 2-5 % on normalised cross sections.

[±]UCL

Energy dependence of *D**** cross sections**

Summary

- Dependence of the charm cross section on the *ep* centre-ofmass energy measured for the first time at HERA.
- The cross sections, normalised to the highest \sqrt{s} , increase with increasing \sqrt{s} .
- The behaviour is predicted well by perturbative QCD.
- Adds confidence in the use of pQCD predictions for higherenergy projects, e.g. LHeC.
- Demonstrates the consistency of gluon distribution probed here with that extracted in PDF fits.