

EDS Blois 2015:

The 16th conference on Elastic and Diffractive Scattering

Review of HERA results on exclusive production	
	Manta Duana
	Marta Kuspa
(Univ. Pi	emonte Orientale & INFN-Torino, Italy)

Outline

Review of exclusive (vector meson production) processes at HERA: a window on soft-hard transition

- W dependence
- t dependence
- Pomeron (IP) trajectory
- angular distributions
- elastic vs proton dissociative production
- vertex factorization

Recent H1/ZEUS results

- Exclusive dijet production] [DESY 15-070]
- Ψ'/J/psi [ZEUS prel-15-002]
- ρ production with a leading neutron [H1prelim-14-013]

Diffractive dissociation of the (virtual) photon at HERA

Inclusive and exclusive diffraction

- Q² = virtuality of photon = = (4-momentum exchanged at e vertex)²
- W = invariant mass of γ^* -p system
- t = (4-momentum exchanged at p vertex)²
 typically: |t|<1 GeV²

- M_X = invariant mass of γ^* -IP system
- **B** = Bjorken's variable for the IP
 - = fraction of IP momentum carried by struck quark
 - $= x/x_{IP}$

- Single diffraction/elastic: N=proton
- Double diffraction: proton-dissociative system N

Vector meson (VM) production

Soft - Regge

Hard - QCD

VM (J^{PC}=1⁻⁻): γ , ρ , ϕ , J/ ψ , Υ ,...

With increasing scale (Q^2 , M_{VM} , t)

- $\sigma(W) \propto W^{\delta}$
- Expect δ to increase from soft (~0.2, 'soft Pomeron' value) to hard (~0.8, reflecting large gluon density at low x)
- $\frac{d\sigma}{dt} \propto e^{-b|t|}$
- Expect b to decrease from soft (~10 GeV⁻²) to hard (~4-5 GeV⁻²)

Soft - Regge

Hard - QCD VM MAA p р VM ($J^{PC}=1^{--}$): $\gamma, \rho, \phi, J/\psi, \Upsilon,...$

2-gluon exchange: LO realisation of vacuum quantum numbers in QCD

Cross section proportional to probability of finding 2 gluons in the proton

Gluon density in the proton

 $\sigma \propto [x g]^2$

Soft - Regge

Hard - QCD M P P P

VM (J^{PC}=1⁻⁻): γ , ρ , ϕ , J/ ψ , Υ ,...

With increasing scale (Q^2 , M_{VM} , t)

 $\sigma(W) \propto W^{\delta}$

 $\frac{d\sigma}{d\sigma} \propto e^{-b|t|}$

dt

- Expect δ to increase from soft (~0.2, 'soft Pomeron' value)
 to hard (~0.8, reflecting large gluon density at low x)
- Expect b to decrease from soft (~10 GeV⁻²) to hard (~4-5 GeV⁻²)

Here scale is M_{VM} - same observed when varying Q^2 for a given VM

Soft - Regge

Hard - QCD

VM ($J^{PC}=1^{--}$): γ , ρ , ϕ , J/ψ , Υ ,...

With increasing scale (Q^2 , M_{VM} , t)

 $\sigma(W) \propto W^{\delta}$

$$\frac{d\sigma}{dt} \propto e^{-b|t|}$$

- Expect δ to increase from soft (~0.2, 'soft Pomeron' value)
 to hard (~0.8, reflecting large gluon density at low x)
- Expect b to decrease from soft (~10 GeV⁻²) to hard (~4-5 GeV⁻²)

Transition soft \rightarrow hard: t-slope dependence

As in optical diffraction, size of diffractive cone related to size of interacting objects

$$b \approx b_{VM} + b_{p}$$

Transition soft \rightarrow hard: Pomeron trajectory

From Regge phenomelonogy

 $\alpha_{_{IP}}(t) = \alpha_{_{IP}}(0) + \alpha'_{_{IP}}(t)$

Transition soft \rightarrow hard: Pomeron intercept

From Regge phenomelonogy

 $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP}(t)$

$$\sigma^{\gamma p \to V p}(W) \propto (W^2)^{2\alpha_{IP}(t)-2}$$

Relationship between W dependences of inclusive DIS and vector meson production in presence of a sufficiently large scale

$$\alpha_{IP}(0) = 1 + \lambda \qquad F_2(x, Q^2) \propto x^{-\lambda(Q^2)}$$

Transition soft \rightarrow hard: Pomeron slope

From Regge phenomelonogy

 $\alpha_{IP}(t) = \alpha_{IP}(0) + \alpha'_{IP}(t)$

$$\sigma^{\gamma p \to V p}(W) \propto (W^2)^{2\alpha_{IP}(t)-2}$$

$$b(W) = b_0 + 4\alpha'_{IP} \ln \frac{W}{W_0}$$

Comparison with (pQCD) models

EDS Blois 2015, M. Ruspa

LO and NLO fits to previous J/ ψ measurements at HERA [PLB 662 (2008) 252]

Fits extrapolated to higher W_{yp}

LO fit describes LHCb data

Angular distributions

Angles parameterized with spin density matrix elements (SDME)

EDS Blois 2015, M. Ruspa

Vertex factorisation

Test factorization of VM production amplitudes into - photon vertex governing Q² dependence - proton vertex governing t dependence

Vertex factorisation : ratio $\sigma_{p. diss.} / \sigma_{el.}$ at |t| = 0

Test factorization of VM production amplitudes into

- photon vertex governing \dot{Q}^2 dependence
- proton vertex governing t dependence

No Q² dependence

→ Vertex
factorisation

Within uncertainties, ratios for ρ and ϕ are compatible

EDS Blois 2015, M. Ruspa

Transition soft \rightarrow hard: t-slope dependence

As in optical diffraction, size of diffractive cone related to size of interacting objects

 $b \approx b_{VM} + b_{ps}$

For p.diss. proton breaks $\rightarrow b_{p.diss.}$ smaller than $b_{el.}$

High t domain little explored so far

Proton dissociative processes dominate at high t

ZEUS and H1 results with light VM, J/psi, exclusively produced photons

Vector meson production at HERA, whatsapp

Rich harvest documented by tens of papers

Large W interval

Wide range of several scales (Q^2 , t, M_{VM})

Presently H1 and ZEUS are finalizing analyses of post-upgrade data

- key measurements repeated with full statistics
- runs at reduced center of mass energy originally devoted to F_L extraction allow studies with different kinematics
- low cross section processes benefit from higher lumi

Recent H1/ZEUS results

- Exclusive dijet production [DESY 15-070]
- Ψ'/J/psi [ZEUS prel-15-002]
- p⁰ production with a leading neutron [H1prelim-14-013]

EDS Blois 2015, M. Ruspa

Ψ'/ψ ratio

0

Motivation and event selection

Ratio $R = \frac{\sigma_{\gamma p \to \psi(2S)p}}{\sigma_{\gamma p \to J/\psi p}}$

ψ(2S)

 $\Psi(2s)$ wave function different from J/ψ wave function

[ZEUS prel-15-002]

pQCD models predict R \approx 0.17 (photoproduction) and rise of R with Q²

 $\Psi(2S) \rightarrow J/\psi \pi^{+} \pi^{-;} J/\psi \rightarrow \mu^{+} \mu^{-}$ $\Psi(2S) \rightarrow \mu^{+} \mu^{-}$ $J/\psi \rightarrow \mu^{+} \mu^{-}$ $e^{e'}$ μ^{μ} P P P

 \rightarrow Much larger luminosity in ZEUS measurement (HERA I + HERA II)

EDS Blois 2015, M. Ruspa

HIKT, Hufner et al.:dipole model, dipole-proton constrained by inclusive DIS data AR, Armesto and Rezaeian: impact parameter dependent CGC and IP-Sat model KMW,Kowalski Motyka Watt: QCD description and universality of quarkonia production FFJS, Fazio et al.: two component Pomeron model KNNPZZ, Nemchik et al.: color-dipole cross section derived from BFKL generalised eq. LM, Lappi and Mäntysaari : dipole picture in IP-Sat model

ρ^{0} photoproduction with a leading neutron

[H1prelim-14-01] Exclusive ρ^0 photoproduction with forward n

 x_{L} = fraction of incoming p momentum carried by n

Mean W of 22 GeV \rightarrow soft regime

- The photon emitted from the electron beam scatters elastically on the pion emitted from the proton producing a ρ^0
- Theoretically: exchange of two Regge trajectories in a double-peripheral scattering process

[H1prelim-14-01]

Exclusive ρ^0 photoproduction with forward n

Models differ in the implementation of the pion flux

\rightarrow Shape generally well described by predictions

[H1prelim-14-01] Exclusive ρ^0 photoproduction with forward n

 $\sigma(\gamma \pi) / \sigma(\gamma p) = 0.25 \pm 0.06$

In agreement with a previous **ZEUS** result

Lower than expectations \rightarrow absorption?

Two slopes as predicted for a double-peripheral process

Exclusive dijet production in DIS

Discussed by A. Valkarova

 $p\left(\mathbf{P}\right)$

EDS Blois 2015, M. Ruspa

Resolved Pomeron model Predictions based on diffractive g(x) from fits to the H1 data (H1 Fit A and B)

 $p'(\mathbf{P'})$

 $I\!P$

 \rightarrow Almost constant positive A through full β range

Two-gluon exchange model Predictions based on the GRV parameterisation of the gluon density

 \rightarrow A varies from positive to negative

 \rightarrow Qualitative agreement for 0.3 < β < 0.7

Models of qqbar production in diffractive DIS

Resolved Pomeron model

Two-gluon exchange model

- Gluon emitted from the IP
- qqbar pair produced via bosongluon fusion
- Positive A
- Cross section sensitive to the diffractive gluon distribution in the proton

- Virtual photon fluctuates into qqbar, which then fluctuates to two gluons from the proton
- Negative A
- Cross section sensitive to the gluon distribution in the proton
- Emission of additional gluon also contributes to qqbar production

In summary

Unique HERA data on exclusive processes providing new insights for the understanding of QCD and the interplay of soft and hard diffraction

□ Presently H1 and ZEUS are finalizing their analyses of post-upgrade data

key measurements repeated with full statistics

Iow cross section processes benefit from higher lumi

- □ First HERA measurement of exclusive dijets in DIS: two-gluon exchange model agrees with the data within (large) uncertainties
- $\Box~\psi'/J/\psi$ measured by ZEUS with full available statistics: ratio grows with Q² and is constant with W and t
- \Box Exclusive ρ^0 photoproduction associated with leading neutron, measured by H1, used to extract the elastic cross section $\sigma(\gamma\pi + \rightarrow \rho^0\pi +)$ for the first time at HERA

What HERA VM data taught us (and still teach)

- $\Box\,$ The cross section rises with W and its logarithmic derivative in W, $\delta,$ increases with Q^2
- □ The effective Pomeron trajectory has a larger intercept than that extracted in soft interactions
- \Box The exponential slope of the t distribution decreases with Q² and levels off at about b of 5 GeV-²
- Proton and photon vertex factorize
- □ Where applicable, perturbative QCD calculations are a complementary source of information on the gluon content in the proton
- \Box The ratio of cross sections induced by longitudinally and transversely polarised virtual photons increases with Q^2 , but is independent of W and |t|