HERA incl. $\sigma_{NC,CC}$ & a new PDF fit, HERAPDF2.0

Z. Zhang LAL, Orsay

On behalf of the H1 & ZEUS collaborations

Outline

- 2) Full HERA data combination H1+ZEUS, HERA-1 & -2 inclusive NC* and CC** cross sections ($\sigma_{NC.CC}$) \rightarrow a major legacy of HERA
- 3) HERAPDF 2.0
- Summary 4)

* NC: Neutral Current ** CC: Charged Current

EDS Blois, Jun. 29-Jul. 4, 2015, Corsica

Freshly made public: arXiv:1506.06042

- 160 pages83 figures16 tables

Introduction

ep collider, HERA, used to be the largest electron microscope Both NC and CC inclusive cross sections were precisely measured

HERA-1 (1992-2000):

Combined HERA-1 data primary input for all modern PDF sets:

- CTEQ
- MRST
- NNPDFs
- HERAPDF1.0
-

HERA-2 (2003-2007):

- Increased lumi (x10 e-, x2 e+)
- Long. polarized e beam
- Full combination HERA-1 & -2

Introduction

EDS Blois, Jun. 29-Jul. 4, 2015, Corsica

Zhiqing Zhang (LAL, Orsay)

LHC: needs precise input PDFs

f(x)

Full HERA Data Combination

1

			Data Set		XBi (Grid	O ² [GeV	V ² 1 Grid	£	e ⁺ /e ⁻	\sqrt{s}
					from	to	from	to	pb^{-1}	- /-	GeV
			HERA I $E_n = 820$ GeV and	$E_{n} = 920$	GeV data sets						
_			H1 syx-mb [2]	95-00	0.000005	0.02	0.2	12	2.1	e^+p	301,319
7			H1 low $Q^{2}[2]$	96-00	0.0002	0.1	12	150	22	e^+p	301,319
	T		H1 NC	94-97	0.0032	0.65	150	30000	35.6	e^+p	301
\sim			H1 CC	94-97	0.013	0.40	300	15000	35.6	e^+p	301
A			H1 NC	98-99	0.0032	0.65	150	30000	16.4	e ⁻ p	319
<u> </u>			H1 CC	98-99	0.013	0.40	300	15000	16.4	e ⁻ p	319
+	一击人		H1 NC HY	98-99	0.0013	0.01	100	800	16.4	e ⁻ p	319
			H1 NC	99-00	0.0013	0.65	100	30000	65.2	e^+p	319
r r			H1 CC	99-00	0.013	0.40	300	15000	65.2	e^+p	319
0	I FA		ZEUS BPC	95	0.000002	0.00006	0.11	0.65	1.65	e^+p	300
$\downarrow \equiv$			ZEUS BPT	97	0.0000006	0.001	0.045	0.65	3.9	e^+p	300
_ 7			ZEUS SVX	95	0.000012	0.0019	0.6	17	0.2	e^+p	300
T 2.			ZEUS NC [2] high/low Q^2	96-97	0.00006	0.65	2.7	30000	30.0	e^+p	300
			ZEUS CC	94-97	0.015	0.42	280	17000	47.7	e^+p	300
			ZEUS NC	98-99	0.005	0.65	200	30000	15.9	e^-p	318
<u> </u>	ŭ ž		ZEUS CC	98-99	0.015	0.42	280	30000	16.4	e ⁻ p	318
<u>P</u> I			ZEUS NC	99-00	0.005	0.65	200	30000	63.2	e^+p	318
$\leq \square$	1		ZEUS CC	99-00	0.008	0.42	280	17000	60.9	e^+p	318
U D	1		HERA II $E_p = 920 \text{ GeV}$ data sets								
I A	1		H1 NC 1.5p	03-07	0.0008	0.65	60	30000	182	e^+p	319
SI L	1		H1 CC 1.5p	03-07	0.008	0.40	300	15000	182	e^+p	319
	1		H1 NC 1.5p	03-07	0.0008	0.65	60	50000	151.7	e^-p	319
0	1		H1 CC 1.5p	03-07	0.008	0.40	300	30000	151.7	e ⁻ p	319
n	1		H1 NC med Q2 *9.5	03-07	0.0000986	0.005	8.5	90	97.6	e^+p	319
25	1		H1 NC low Q2 *9.5	03-07	0.000029	0.00032	2.5	12	5.9	e^+p	319
<u> </u>	1		ZEUS NC	06-07	0.005	0.65	200	30000	135.5	e^+p	318
n	1		ZEUS CC 1.5p	06-07	0.0078	0.42	280	30000	132	e^+p	318
2 +	1		ZEUS NC 1.5	05-06	0.005	0.65	200	30000	169.9	e ⁻ p	318
0			ZEUS CC 15	04-06	0.015	0.65	280	30000	175	e ⁻ p	318
ň			ZEUS NC nominal *9	06-07	0.000092	0.008343	7	110	44.5	e^+p	318
			ZEUS NC satellite *9	06-07	0.000071	0.008343	5	110	44.5	e^+p	318
			HERA II $E_p = 575 \text{GeV}$ dat	a sets							
20	1.12		H1 NC high Q^2	07	0.00065	0.65	35	800	5.4	e ⁺ p	252
- >20 publications			H1 NC low Q^2	07	0.0000279	0.0148	1.5	90	5.9	e^+p	252
			ZEUS NC nominal	07	0.000147	0.013349	7	110	7.1	e^+p	251
- 2927 data points			ZEUS NC satellite	07	0.000125	0.013349	5	110	7.1	e^+p	251
			HERA II $E_p = 460 \text{ GeV}$ dat	a sets							
combined into 1307			H1 NC high O^2	07	0.00081	0.65	35	800	11.8	e^+p	225
			H1 NC low Q^2	07	0.0000348	0.0148	1.5	90	12.2	e^+p	225
			ZEUS NC nominal	07	0.000184	0.016686	7	110	13.9	e ⁺ p	225
			ZEUS NC satellite	07	0.000143	0.016686	5	110	13.9	e^+p	225
Lal 4 2015	Contine		Zhiqing Zhang (reav)						

EDS Blois, Jun. 29-Jul. 4, 2015, Corsica

Combined NC Data vs. Individual & HERA-1

Combined vs. individual ones (shown for a subset) Combined vs. HERA-1 combination (shown for high Q² data)

The improved precision is mainly statistical at high x and Q^2 and systematic at small x & Q^2

Combined CC Data vs. Individual & HERA-1

EDS Blois, Jun. 29-Jul. 4, 2015, Corsica

Combined NC Data at Low Q² & E_p Energies

Combined vs. individual ones (Js=225GeV)

Combined vs. individual ones (Js=251GeV)

HERAPDF 2.0

Input data: Combined HERA inclusive DIS NC & CC cross sections
Fitting program: HERAFitter (www.herafitter.org)
PDFs parameterized at μ²_{f0}=1.9GeV²

$$xf(x) = Ax^{B}(1-x)^{C}(1+Dx+Ex^{2})$$
$$xg(x), xu_{v}(s), xd_{v}(x), x\overline{U}(x), x\overline{D}(x)$$

PDFs evolution: DGLAP equation at NLO, NNLO
Heavy flavor scheme: GM VFNS* (RT OPT**)

* GM VFNS: General Mass Variable Flavor Number Scheme ** RT OPT: Robert Thorne OPTimal scheme: PRD86 (2012) 074017, arXiv:1201.6180

EDS Blois, Jun. 29-Jul. 4, 2015, Corsica

HERAPDF2.0 Uncertainties

Experimental uncertainties

- taking into corr. account
- HESSIAN method (x-checked with MC method)

Model uncertainties

Variation	Standard Value	Lower Limit	Upper Limit						
$Q_{\rm min}^2$ [GeV ²]	3.5	2.5	5.0						
$Q_{\rm min}^2$ [GeV ²] HiQ2	10.0	7.5	12.5						
M _c (NLO) [GeV]	1.47	1.41	1.53						
M _c (NNLO) [GeV]	1.43	1.37	1.49						
M_b [GeV]	4.5	4.25	4.75						
f_s	0.4	0.3	0.5						
$\alpha_s(M_Z^2)$	0.118	-	-						
$\mu_{f_0}^2$ [GeV]	1.9	1.6	2.2						

The addition of D & E parameters Parameterization uncertainties

Other HERAPDF Fits & Comparison

□ HERAPDF2.0 vs HERAPDF1.0

□ HERAPDF2.0HiQ2:

Use Q_{min}^2 > 10GeV² instead of Q_{min}^2 > 3.5GeV²

□ HERAPDF2.0 NLO vs NNLO

□ HERAPDF2.0AG:

Alternative Gluon PDF form (w/o negative term)

□ HERAPDF2.0FF:

Fixed Flavor schemes FF3A, FF3B (in addition to RTOPT, FONLL, ACOT)

□ HERAPDF2.0Jets:

Include also H1, ZEUS jet data & combined charm data

HERAPDF2.0 vs HERAPDF1.0

Predictions based on HERAPDF 1.0/2.0 describe well the data Uncertainties of both data and PDFs have improved

EDS Blois, Jun. 29-Jul. 4, 2015, Corsica

HERAPDF2.0 vs HERAPDF1.0

Much more high-x data

Substantially better precision at high-x

HERAPDF2.0 vs. HERAPDF2.0HiQ2

EDS Blois, Jun. 29-Jul. 4, 2015, Corsica

Zhiqing Zhang (LAL, Orsay)

13 /18

HERAPDF2.0 vs. HERAPDF2.0HiQ2

 χ^2/n_{dof} improves from 1.2 to 1.15 for Q^2_{min} >10GeV² fit but the extrapolation to lower Q^2 does not describe the data

EDS Blois, Jun. 29-Jul. 4, 2015, Corsica

HERAPDF2.0 NLO vs NNLO

The main difference is on xg(x) due to different NLO/NNLO evolutions

Both NLO/NNLO predictions describe the data (selected sample for clarity)

HERAPDF2.0 vs. HERAPDF2.0Jets

Including jet (& charm) data provide additional constraint on gluon

Inclusive + charm + jet \rightarrow A precise α_s determination

 $\alpha_s(M_Z^2) = 0.1183 \pm 0.0009_{\text{exp}}$ $\pm 0.0005_{\text{model/par.}}$ $\pm 0.0012_{\text{had.}}$ +0.0037-0.0030 scale

The result agrees well with world average value

& is competitive w.r.t. other determinations

HERAPDF2.0 vs. Other PDFs

In general, good agreement within the uncertainty bands Valence quarks u and d are both harder at large x than the other PDFs → Need more (LHC) data to constrain the low and high x

- Final combination of the inclusive NC and CC cross sections is ready the data cover wide kinematic range and show unprecedented precision
 Jegacy of HERA
- > New HERAPDF 2.0 provides improved PDF precision
 - → Timely input for Run-II predictions @LHC

HERAPDF2.0 vs. HERAPDF2.0AG

HERAPDF2.0 vs. HERAPDF2.0FF

FF3A:

- 3 flavor running of $\alpha_{\!s}$
- F_L at $O(\alpha_s^2)$
- Pole masses: m_c^{pole}, m_b^{pole}

FF3B:

- variable flavor running of $\alpha_{\rm s}$
- F_L at $O(\alpha_s)$
- MSbar masses: $m_c(m_c)$, $m_b(m_b)$

EDS Blois, Jun. 29-Jul. 4, 2015, Corsica