EUROPEAN PHYSICAL SOCIETY CONFERENCE ON HIGH ENERGY PHYSICS 2015 222 - 29 JULY 2015 VIENNA, AUSTRIA

HERAFitter Project Open Source QCD Fit framework

Voica Radescu on behalf of the HERAFitter team

Proton Structure Measurements

An intensive QCD program in the past years to analyse all these data to extract the QCD free parameters

Why more PDF precision?

- Discovery of new exciting physics relies on precise knowledge of proton structure.
 - PDFs are one of the main theory uncertainties in Mw measurement
 - PDFs are one of main theory uncertainties in Higgs production

Factorisation theorem:

 Cross section can be calculated by convoluting short distance partonic reactions (calculable in pQCD) with Parton Distribution Functions (PDFs):

$$\mathrm{d}\sigma(\mathbf{h}_{1}\mathbf{h}_{2}\to cd) = \int_{0}^{1} \mathrm{d}x_{1}\mathrm{d}x_{2} \sum_{a,b} f_{a/\mathbf{h}_{1}}(x_{1},\mu_{F}^{2})f_{b/\mathbf{h}_{2}}(x_{2},\mu_{F}^{2})\mathrm{d}\hat{\sigma}^{(ab\to cd)}(Q^{2},\mu_{F}^{2})$$

- PDFs cannot be calculated in perturbative QCD, however they are process independent (universal) and their evolution with the scale is predicted by pQCD
- * PDF uncertainties can be controlled better by:
 - more targeted precision measurements
 - * a comprehensive theoretical framework that can test various methods/models
- * <u>HERAFitter Project</u>: based on open source software code with regular releases www.herafitter.org
 - provides a unique QCD framework to address theoretical differences
 - provides means to the experimentalists to optimise the measurement and assess impact/ consistency of new data

HERAFitter Project at Glance:

Main Steps for a QCD fit:

- Parametrise PDFs at the starting scale
 - multiple options for functional forms
 - Standard Polynomial, Chebyshev, etc
- Evolve to the scale corresponding to data point
 - DGLAP evolution codes [QCDNUM, APFEL]
 - kt ordered evolution, Dipole models
- Calculate the cross section
 - various heavy flavour schemes:
 - RT, ACOT, FONLL, FFNS
 - fast grid techniques interfaced to DY:
 - APPLGRID, FASTNLO
- Compare with data via $\chi 2$:
 - multiple forms to account for correlations
- Minimize $\chi 2$ with respect to PDF parameters
 - MINUIT, data driven regularisation

Results using HERAFitter

List of a	nalvses by	/ HERAFitter					
- 03.201	15 HERAE	itter team submitted to EPIC arXiv:150	3.05221	- OCD analysis of W- and Z-boson n	And and a material		
10.2014	2014 HERAFitter team submitted to EPJC, arXiv:1503.052		410.4412	GCD analysis or W- and 2-boson production at revatron			
04 2014	HERAFILLEF team EPJC (2015), 75:304, drAiv:1410.44 14 HERAFILLEF team EPJC (2014) 74: 3030, arXiv:1404.44		1404 4234	A sector distribution functions at LO, NLO and NNLO with correlation			
01.2011	The first		110111201				
List of a	nalyses us	ing HERAFitter			at 1		
Number	Date	ate Group R		Reference Tit' . XV			
	2015				FIL		
26	07.2015	PDF4LHC	accepte	d by Journal of Physics G	CHC report on PDFs and LHC data:Results from R		
25	06.2015	HERA/H1 and ZEUS	submitt	ed to EPJC	combination of Measurements of Inclusive Deep Inelastic		
24	05.2015	LHC/CMS	CMS PA	S SMP-14-022	• Measurement of the muon charge asymmetry in inclusive		
23	03.2015	LHC/ATLAS	arXiv:1	503.03709	• Measurement of the forward-backward asymmetry of e an		
22	03.2015	PROSA	arXiv:1	503.04581	he Little pasurements of forward charm and l		
	2014			× Or			
21	10.2014	LHC/ATLAS	ATL-PH	YE AL	theo the measurement of		
20	10.2014	LHC/CMS	arXiv	MP-12-028)	12% on and extraction		
19	09.2014	LHC/ATLAS		0.7	sive ye top-qua		
18	09.2014	M.Guzzi, K.Lipka, S-O.Moch	X		pair erential		
17	08.2014	LHC/CMS	0,0	2014) 032004 / arXiv:			
16	05.2014	HERA/ZEUS	(V:1	405.6915			
15	05.2014	ggH benchmark HERA	arxiv:1	405.1067	10 /0		
14	04.2014	HERA	prelimir	hary	52.0		
13	04.2014	LHC/AT CUL	JHEP 00	5 (2014) 112, arXiv:14	iner of the ossis		
12	02.2014	the res	JHEP05	(2014)068, arXiv:1402	to / rem the p. ciatio		
11	01.2014	sic y	arXiv:1	401.1133 22	o at a tive b bution		
10	1	Offern and H. Jung	Nucl. Pl arXiv:1	nys. B 883, 1, PLBv736:2. 312.7875	insy tepel from DIS		
~C	1 °	M. Klein, V. Radescu (LHeC studies)	arXiv:1	310.5189			
· L	∠013	A. Luszczak and H. Kowalski	Phys. R	ev. D 89, 074051 (2014), arXiv:131	2. I U /O ision HERA data		
	12.2013	LHC/ATLAS	ATL-PH	YS-PUB-2013-018	proton parton distributions		
6	2013	LHC/ATLAS	Phys. L	ett. B 725 (2013) pp. 223	• Measurement of the high-mass Drell-Yan differential cross		
5	2013		EPJC (2		Theory the sive Other in pp collision		
4	2013		Phys.Re	ev.Lett. 109 (2012) 012001	Determination of the strange quark density of the proton f		
3	2013	HERA/HINING ZENSICKAF	TTEP	ys. J. C73 (2013) 2311	. Combination and QCD Analysis of Charm Production Cross		
	2012						
2	2012	HERA/H1	JHEP 09	0 (2012) 061	Inclusive Deep Inelastic Scattering at High Q2 with Longitu		
1	2012	LHeC	J.Phys.	G39 (2012) 075001	A Large Hadron Electron Collider at CERN: Report on the P		

 LHC experiments provide the main developments and usage of HERAFitter platform

 3 HERAFitter publications carried out by HERAFitter developers [~30]

Highlighted Results using HERAFitter

- * HERAFitter platform can be used for quantitative assessment in level of agreement between measurements and SM theoretical predictions, accounting for all uncertainties:
 - Low Mass DY (ATLAS) data [arXiv:1404.1212]

Prediction	χ^2 (8 points)
	Nominal
POWHEG NLO+LLPS	22.4 (19.8)
Fewz NLO	48.7 (28.6)
Fewz NNLO	13.9 (12.9)

t-channel single top-quark production cross sections (ATLAS) [arXiv:1406.7844]

* HERAFitter platform can be used for QCD fits to extract PDFs or to study the impact of new data on PDFs * HERAPDF2.0 (H1 and ZEUS), ATLASepWZ2012, CMS PDF fits using W+c, W asymmetry, CMS PDF+alphas from jets

Potential impact of 13TeV data on PDFs

PDF4LHC studies accepted by JPG, arXiv:1507.00556

•

- HERAFitter provides possibility to study the potential impact of Run II data on the current precision of PDFs using profiling method:
 - * Profiling method uses the minimisation of the χ^2 function that includes both data and PDF uncertainties

$$\chi^2(m{eta_{exp}},m{eta_{th}}) = \sum_{i=1}^{N_{ ext{data}}} rac{\left(\sigma_i^{ ext{exp}} + \sum_j \Gamma_{ij}^{ ext{exp}} m{eta_{j, ext{exp}}} - \sigma_i^{ ext{th}} - \sum_k \Gamma_{ik}^{ ext{th}} m{eta_{k, ext{th}}}
ight)^2}{\Delta_i^2} + \sum_j m{eta_{j, ext{exp}}}^2 m{eta_{j, ext{exp}}}^2 + \sum_k m{eta_{k, ext{th}}}^2$$

- β nuisance parameters Γ influence on data / theory
- * Using global PDFs: CT10, MMHT, NNPDF3.0 and benchmark measurements: inclusive W, Z and tt⁻ production
 - generated pseudo data: uncertainties are based on Run 1 results as published by ATLAS and CMS:
 - <u>baseline scenario</u>: data uncertainties are taken to be similar to those of the Run I measurements
 - * <u>conservative scenario</u>: data uncertainties are scaled up by factor of two
 - * <u>aggressive scenario</u>: data uncertainties are reduced by factor of two.

	$R_{W/Z}$	$R_{ m t\bar{t}/Z}$	A_ℓ	y_Z
Kinematic range			$p_{t,\ell} > 25 \text{GeV}, \eta_\ell < 2.5$	
Number of bins	1	1	10	12
Baseline accuracy per bin	1%	2%	$\approx 1.5\%$	$\approx 1.5\%$

Correlations of PDF uncertainties at LO, NLO, NNLO

Eur. Phys. J. C (2014) 74:3039

- Ratios of cross sections are used to reduce common uncertainties, however the theoretical calculations sometimes are not available at the same order of accuracy in pQCD:
 - how to minimize theory error on predictions of cross-section ratio?

- HERAFitter provides a possibility to account for correlations between PDFs at different orders which can lead to reduction of overall theoretical uncertainties:
 - —> PDFs extracted using HERA I data with syncronised uncertainties at NLO and NNLO using MC method with synchronised seeds

Correlations of PDF uncertainties at LO, NLO, NNLO

Eur. Phys. J. C (2014) 74:3039

- Ratios of cross sections are used to reduce common uncertainties, however the theoretical calculations sometimes are not available at the same order of accuracy in pQCD:
 - how to minimize theory error on predictions of cross-section ratio?

 HERAFitter provides a possibility to account for correlations between PDFs at different orders which can lead to reduction of overall theoretical uncertainties:

Propagated to use case scenario of *Z* boson and *WW* diboson production at the LHC.

mixed-order calculations with correlated PDFs help to reduce PDF and scale uncertainties total theoretical uncertainty is reduced by 30-40% Voica Radescu [EPS 2015

9

*

QCD Analysis of W and Z production at Tevatron

submitted to Eur. Phys. J. C, arXiv:1503.05221

- * In proton-antiproton collisions at Tevatron, DY processes of W and Z production are valence-quark dominated
 - -> they can be used to improve quark valence PDFs especially the d-quark type
 - * However, long history of tensions between CDF and D0 W asymmetry
- * HERAFitter team examines the compatibility of the Tevatron data with QCD for:
 - Z rapidity distributions [CDF and D0]
 - * Lepton charge asymmetry in W—> l,ν [D0]
 - W charge asymmetry [CDF and D0]
 Ref: arXiv:0702025, arXiv:0908.3914, arXiv:1309.2591, arXiv:0901.2169, arXiv:1312.2895, arXiv:1412.2862
- * A QCD Fit analysis is performed at NLO, using HERA I data as a reference and adding Tevatron data on top:
 - a revised correlation model is used by treating the uncertainties of data-driven corrections as bin-to-bin uncorrelated: lepton ID, trigger, and charge efficiencies
 - * it required a more flexible parametrisation wrt to fits to HERA I data:

QCD Analysis of W and Z production at Tevatron

submitted to Eur. Phys. J. C, arXiv:1503.05221

- * In proton-antiproton collisions at Tevatron, DY processes of W and Z production are valence-quark dominated
 - -> they can be used to improve quark valence PDFs especially the d-quark type
 - * However, long history of tensions between CDF and D0 W asymmetry
- * HERAFitter team examines the compatibility of the Tevatron data with QCD for:
 - Z rapidity distributions [CDF and D0]
 - * Lepton charge asymmetry in W—> l,v [D0]
 - W charge asymmetry [CDF and D0]
 Ref: arXiv:0702025, arXiv:0908.3914, arXiv:1309.2591, arXiv:0901.2169, arXiv:1312.2895, arXiv:1412.2862
- * A QCD Fit analysis is performed at NLO, using HERA I data as a reference and adding Tevatron data on top:
 - a revised correlation model is used by treating the uncertainties of data-driven corrections as bin-to-bin uncorrelated: lepton ID, trigger, and charge efficiencies
 - * it required a more flexible parametrisation wrt to fits to HERA I data

Good agreement between latest CDF and D0 W asymmetry data!

The inclusion of the the Tevatron W asymmetry data improves the agreement between CT10 and MMHT

Voica Radescu | EPS 2015

Summary

 HERAFitter project is based on a multi-functional open source QCD software package that provides a framework for scrupulous interpretations of the QCD analyses.

<u>www.herafitter.org</u> herafitter-1.1.1 latest release

- * HERAFitter provides state-of-the-art calculations for LO,NLO,NNLO predictions and fast minimisation tools to perform a complete QCD fit analysis.
- * HERAFitter is actively used by the LHC experiments and theory community.
- * Highlighted in this talk most recent studies by HERAFitter developers:
 - Correlated PDFs for different orders allows to reduce theoretical uncertainties for cross-section ratios, calculated at different order.
 - Fits and profiling studies of the recent Tevatron W, Z data show importance of them to constrain d valence, which is essential for the W-boson mass measurement at the LHC
 - * Profiling techniques as implemented in HERAFitter can be used in assessing the impact of future data.

extra (not necessarily useful)

Observable	Experiment	Integrated Kinematic		Used in the
		luminosity	requirements	nominal fit
$d\sigma(Z)/dy$	D0	0.4 fb^{-1}	$71 < m_{ee} < 111 { m GeV}$	yes
$d\sigma(Z)/dy$	CDF	2.1 fb^{-1}	$66 < m_{ee} < 116 {\rm GeV}$	yes
A_{μ}	D0	7.3 fb^{-1}	$p_T^{\mu} > 25 \text{ GeV}, p_T^{\nu} > 25 \text{ GeV}$	yes
$A_{W \to ev}$	CDF	$1.0 {\rm ~fb^{-1}}$	none	yes
$A_{W \to ev}$	D0	9.7 fb^{-1}	$E_T^e > 25 \text{ GeV}, p_T^v > 25 \text{ GeV}$	yes
A_e	D0	9.7 fb ⁻¹	$E_T^e>25~{\rm GeV},p_T^\nu>25~{\rm GeV}$	no

Data set	(partial) χ^2/dof	partial χ^2/dof vs PDF set		PDF set
		CT10	MMHT14	NNPDF3.0
D0 $d\sigma(Z)/dy$	23 / 28			
$\text{CDF} d\sigma(Z)/dy$	32 / 28			
$D0 A_{\mu}$	12 / 10	13/10		12/10
$\operatorname{CDF} A_{W \to ev}$	14 / 13	14/13		15/13
$D0 A_{W \to ev}$	8 / 14	8/14	5/14	2/14
Total $\chi^2_{\rm min}$ (incl. HERA) / dof	606 / 628			

HERAFitter Program at glance

- HERAFitter code is a combination of C++ and Fortran 77 libraries with minimal dependencies and modular structure with interface to external packages:
 - QCDNUM for evolution of PDFs
- DIS inclusive processes in ep and fixed target
 - Different schemes of heavy quark treatment
 - * VFNS, FFNS:
 - * OPENQCDRAD (ABM)
 - * TR' (MSTW)
 - * ACOT (CT)
 - Diffractive PDFs
 - Dipole Models
 - Unintegrated PDFs (TMDs)
- Jet production (ep, pp, ppbar)
 - FastNLO and APPLGRID techniques
- Drell-Yan processes (pp, ppbar)
 - LO calculation x NLO k-factors
 - APPLGRID technique
- * Top pair production
 - total inclusive ttbar cross sections (HATHOR)
 - differential (DiffTop approx NNLO via fastNLO grids)

--enable-openmp
--enable-trapFPE
--enable-checkBounds
--enable-nnpdfWeight
--enable-lhapdf
--enable-applgrid
--enable-genetic
--enable-hathor

enable openmp support Stop of floating point errors (default=no) add -fbounds-check flag for compilation (default=no) use NNPDF weighting (default=no) use lhapdf (default=no) use applgrid for fast pdf convolutions (default=no) use genetic for general minimia search (default=no) use hathor for ttbar cross section predictions (default=no) use uPDF evolution (default=no) Build documentation (default=no)

--enable-updf --enable-doc

Experimental Data	Process	Reaction	Theory schemes calculations
HERA, Fixed Target	DIS NC	$ep \rightarrow eX$ $\mu p \rightarrow \mu X$	TR', ACOT, ZM (QCDNUM), FFN (OPENQCDRAD, QCDNUM), TMD (uPDFevolv)
HERA	DIS CC	$ep \rightarrow v_e X$	ACOT, ZM (QCDNUM), FFN (OPENQCDRAD)
	DIS jets	$ep \rightarrow e \text{ jets} X$	NLOJet++(fastNLO)
	DIS heavy quarks	$ep ightarrow ec\bar{c}X, \\ ep ightarrow eb\bar{b}X$	TR', ACOT, ZM (QCDNUM), FFN (OPENQCDRAD, QCDNUM)
Tevatron, LHC	Drell-Yan	$pp(\bar{p}) \rightarrow l\bar{l}X, \\ pp(\bar{p}) \rightarrow l\nu X$	MCFM (APPLGRID)
	top pair	$pp(\bar{p}) \rightarrow t\bar{t}X$	MCFM (APPLGRID), HATHOR, DiffTop
	single top	$\begin{array}{l} pp(\bar{p}) \rightarrow tlvX, \\ pp(\bar{p}) \rightarrow tX, \\ pp(\bar{p}) \rightarrow tWX \end{array}$	MCFM (APPLGRID)
	jets	$pp(\bar{p}) \rightarrow jetsX$	NLOJet++ (APPLGRID), NLOJet++ (fastNLO)
LHC	DY heavy quarks	$pp \rightarrow VhX$	MCFM (APPLGRID)

Transverse Momentum Distributions

QCD applications to multiple-scale scattering problems and complex final-state observables require in general formulations of factorisation which involve transverse-momentum dependent (TMD) - or known also as unintegrated PDFs.

$$\sigma_j(x,Q^2) = \int_x^1 dz \int d^2k_t \ \hat{\sigma}_j(x,Q^2,z,k_t) \ \mathcal{A}(z,k_t,\mu) \longrightarrow a \text{ convolution in both longitudinal}$$

and transverse momenta of TMD with off-shell partonic matrix elements

Fits to combined measurements of proton's structure functions from HERA using transverse momentum dependent QCD factorisation and CCFM evolution is performed using HERAFitter platform

* The extracted gluon TMD with experimental and theory uncertainty [JH-2013-set1] is then used as prediction to vector boson+jet production process at the LHC [Phys. Rev. D 85 (2012) 092002.]

- * This process is important both for SM physics and for new physics searches at the LHC
- Results compare well with the measurements of jet multiplicities and transverse momentum spectra within the pdf uncertainties

QCD interpretation of W production at CMS

 Impact on valence PDFs from W asymmetry is investigated within the HERAFitter framework through a QCD fit analysis

* In addition, W+charm data provides direct sensitivity to the strange quark

Studies of theoretical uncertainties of Mw mass at the LHC ATL-PHYS-PUB-2014-015

- * The measurement of the mass of the W boson provides a stringent test of the SM
- * At the LHC, the best experimental precision on Mw might be achieved from the pT distribution of the charged electron/muon from leptonic decay of W:
- * A quantitative study of the theoretical uncertainties due to the incomplete knowledge of the quark PDF, and to the uncertainties on the modelling of the low-pT region of W/Z bosons, was performed using HERAFitter platform.
 - * Theoretical predictions is based on MCFM and CuTe (interfaced to APPLGRID)
 - * A PDF set is generated using simply HERA I data to study the model variations (mc, strange) and propagated via chi2 profiling method to study the effect of PDF uncertainties

Running beauty mass from F2b

*

- The value of the running beauty mass is obtained using HERAFitter (via OPENQCDRAD):
 - chi2 scan method from QCD fits in FFN scheme to the combined HERA I inclusive data + beauty measurements, beauty-quark mass is defined in the MS scheme.

The extracted MS beauty-quark mass is in agreement with PDG average and LEP results.

10

μ **[GeV]**