# **Proton Structure Measurements from HERA**



Deep Inelastic Scattering H1 , ZEUS & HERA ep Collider Data Combination QCD Analyses & HERAPDF2.0 Conclusions





Eram Rizvi Queen Mary





Charged current scattering



Use factorisation in pp collisions at LHC:  $\sigma_{pp \to X} = f_{p \to i} \otimes \hat{\sigma}_{i,j \to X} \otimes f_{p \to j}$ 

Signature Isolated electron/positron pT balanced with hadronic system X Signature No detected lepton (neutrino) pT imbalanced for hadronic system X

PDFs are not observables - only structure functions are Measuring these cross sections allows indirect access to the universal PDFs  $xf_{p\rightarrow i}$ 



$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^2} = \frac{2\pi\alpha^2}{x} \qquad \left[\frac{1}{Q^2}\right]^2 \qquad \left[Y_+\tilde{F}_2 \mp Y_-x\tilde{F}_3 - y^2\tilde{F}_L\right]$$
$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^2} = \frac{G_F^2}{4\pi x} \qquad \left[\frac{M_W^2}{M_W^2 + Q^2}\right]^2 \qquad \left[Y_+\tilde{W}_2^{\pm} \mp Y_-x\tilde{W}_3^{\pm} - y^2\tilde{W}_L^{\pm}\right]$$

 $\tilde{F}_2 \propto \sum (xq_i + x\bar{q}_i)$ Dominant contributionThe NC reduced cross section defined as: $x\tilde{F}_3 \propto \sum (xq_i - x\bar{q}_i)$ Only sensitive at high Q<sup>2</sup> ~ Mz<sup>2</sup> $\tilde{\sigma}_{NC}^{\pm} = \frac{Q^2 x}{2\alpha \pi^2} \frac{1}{Y_+} \frac{d^2 \sigma^{\pm}}{dx dQ^2}$  $\tilde{F}_L \propto \alpha_s \cdot xg(x,Q^2)$ Only sensitive at low Q<sup>2</sup> and high y $\tilde{\sigma}_{NC}^{\pm} \sim \tilde{F}_2 \mp \frac{Y_-}{Y_+} x\tilde{F}_3$ 

The CC reduced cross section defined as:  $2\pi x \left[ M_{w}^{2} + O^{2} \right]^{2} d\sigma_{cc}^{\pm}$ 

similarly for pure weak CC analogues:  $W_2^{\pm}$ ,  $xW_3^{\pm}$  and  $W_L^{\pm}$ 

$$\sigma_{CC}^{\pm} = \frac{1}{G_F^2} \left[ \frac{W - Z}{M_W^2} \right] \frac{CC}{dx dQ^2}$$
$$\frac{d\sigma_{CC}^{\pm}}{dx dQ^2} = \frac{1}{2} \left[ Y_+ W_2^{\pm} \mp Y_- x W_3^{\pm} - y^2 W_L^{\pm} \right]$$

### **HERA Kinematic Plane**









LHC: largest mass states at large x For central production  $x=x_1=x_2$  $M=x\sqrt{s}$ i.e. M > 1 TeV probes x>0.1 Searches for high mass states require precision knowledge at high x Z' / quantum gravity / susy searches... DGLAP evolution allows predictions to be made

High x predictions rely on

- data (DIS / fixed target)
- sum rules
- behaviour of PDFs as  $x \rightarrow 1$





#### Neutral current event selection:

High P<sub>T</sub> isolated scattered lepton Suppress huge photo-production background by imposing longitudinal energy-momentum conservation

Kinematics may be reconstructed in many ways: energy/angle of hadrons & scattered lepton provides excellent tools for sys cross checks

Removal of scattered lepton provides a high stats "pseudo-charged current sample" Excellent tool to cross check CC analysis

Final selection: ~10<sup>5</sup> events per sample at high  $Q^2$ ~10<sup>7</sup> events for 10 <  $Q^2$  < 100 GeV<sup>2</sup>



#### Charged current event selection:

Large missing transverse momentum (neutrino) Suppress huge photo-production background Topological finders to remove cosmic muons Kinematics reconstructed from hadrons Final selection: ~10<sup>3</sup> events per sample



<u>HERA-I operation 1993-2000</u> Ee = 27.6 GeV Ep = 820 / 920 GeV  $\sqrt{s}$ =301 GeV &  $\sqrt{s}$ =318 GeV  $\int \mathcal{L} \sim 110 \text{ pb}^{-1}$  per experiment

<u>HERA-II operation 2003-2007</u> Ee = 27.6 GeV Ep = 920 GeV  $\sqrt{s}$ =318 GeV  $\int \mathcal{L} \sim 330 \text{ pb}^{-1}$  per experiment Longitudinally polarised leptons

Low Energy Run 2007 Ee = 27.6 GeV Ep = 575 & 460 GeV  $\sqrt{s}$ =225 GeV &  $\sqrt{s}$ =251 GeV Dedicated F<sub>L</sub> measurement





#### Summary of HERA-I datasets Combined in HERAPDF1.0

#### Available since 2009

| Data Set     |       | x Range              |                    | $Q^2$ Range      |       | L         | $e^+/e^-$                      | $\sqrt{s}$ |
|--------------|-------|----------------------|--------------------|------------------|-------|-----------|--------------------------------|------------|
|              |       |                      |                    | GeV <sup>2</sup> |       | $pb^{-1}$ |                                | GeV        |
| H1 svx-mb    | 95-00 | $5 \times 10^{-6}$   | 0.02               | 0.2              | 12    | 2.1       | <i>e</i> <sup>+</sup> <i>p</i> | 301-319    |
| H1 low $Q^2$ | 96-00 | $2 \times 10^{-4}$   | 0.1                | 12               | 150   | 22        | <i>e</i> <sup>+</sup> <i>p</i> | 301-319    |
| H1 NC        | 94-97 | 0.0032               | 0.65               | 150              | 30000 | 35.6      | $e^+p$                         | 301        |
| H1 CC        | 94-97 | 0.013                | 0.40               | 300              | 15000 | 35.6      | $e^+p$                         | 301        |
| H1 NC        | 98-99 | 0.0032               | 0.65               | 150              | 30000 | 16.4      | <i>e</i> <sup>-</sup> <i>p</i> | 319        |
| H1 CC        | 98-99 | 0.013                | 0.40               | 300              | 15000 | 16.4      | <i>e</i> <sup>-</sup> <i>p</i> | 319        |
| H1 NC HY     | 98-99 | 0.0013               | 0.01               | 100              | 800   | 16.4      | <i>e</i> <sup>-</sup> <i>p</i> | 319        |
| H1 NC        | 99-00 | 0.0013               | 0.65               | 100              | 30000 | 65.2      | $e^+p$                         | 319        |
| H1 CC        | 99-00 | 0.013                | 0.40               | 300              | 15000 | 65.2      | <i>e</i> <sup>+</sup> <i>p</i> | 319        |
| ZEUS BPC     | 95    | $2 \times 10^{-6}$   | $6 \times 10^{-5}$ | 0.11             | 0.65  | 1.65      | <i>e</i> <sup>+</sup> <i>p</i> | 301        |
| ZEUS BPT     | 97    | $6 \times 10^{-7}$   | 0.001              | 0.045            | 0.65  | 3.9       | $e^+p$                         | 301        |
| ZEUS SVX     | 95    | $1.2 \times 10^{-5}$ | 0.0019             | 0.6              | 17    | 0.2       | $e^+p$                         | 301        |
| ZEUS NC      | 96-97 | $6 \times 10^{-5}$   | 0.65               | 2.7              | 30000 | 30.0      | <i>e</i> <sup>+</sup> <i>p</i> | 301        |
| ZEUS CC      | 94-97 | 0.015                | 0.42               | 280              | 17000 | 47.7      | $e^+p$                         | 301        |
| ZEUS NC      | 98-99 | 0.005                | 0.65               | 200              | 30000 | 15.9      | <i>e</i> <sup>-</sup> <i>p</i> | 319        |
| ZEUS CC      | 98-99 | 0.015                | 0.42               | 280              | 30000 | 16.4      | <i>e</i> <sup>-</sup> <i>p</i> | 319        |
| ZEUS NC      | 99-00 | 0.005                | 0.65               | 200              | 30000 | 63.2      | $e^+p$                         | 319        |
| ZEUS CC      | 99-00 | 0.008                | 0.42               | 280              | 17000 | 60.9      | $e^+p$                         | 319        |

High Q<sup>2</sup> NC and CC data limited to 100 pb<sup>-1</sup> e<sup>+</sup>p 16 pb<sup>-1</sup> e<sup>-</sup>p



#### Up till now HERA-II datasets only partially published

|             | -                    |                  |
|-------------|----------------------|------------------|
| ZEUS CC e⁻p | 175 pb <sup>-1</sup> | EPJ C 61 (2009)  |
| ZEUS CC e⁺p | 132 pb <sup>-1</sup> | EPJ C 70 (2010)  |
| ZEUS NC e⁻p | 170 pb <sup>-1</sup> | EPJ C 62 (2009)  |
| ZEUS NC e⁺p | 135 pb <sup>-1</sup> | ZEUS-prel-11-003 |
| H1 CC e⁻p   | 149 pb <sup>-1</sup> | H1prelim-09-043  |
| H1 CC e⁺p   | 180 pb <sup>-1</sup> | H1prelim-09-043  |
| H1 NC e⁻p   | 149 pb <sup>-1</sup> | H1prelim-09-042  |
| H1 NC e⁺p   | 180 pb <sup>-1</sup> | H1prelim-09-042  |

| ZEUS CC e⁻p | 175 pb <sup>-1</sup> | EPJ C 61 (2009)      |
|-------------|----------------------|----------------------|
| ZEUS CC e⁺p | 132 pb <sup>-1</sup> | EPJ C 70 (2010)      |
| ZEUS NC e⁻p | 170 pb <sup>-1</sup> | EPJ C 62 (2009)      |
| ZEUS NC e⁺p | 135 pb <sup>-1</sup> | PRD 87 (2013) 052014 |
| H1 CC e⁻p   | 149 pb <sup>-1</sup> |                      |
| H1 CC e⁺p   | 180 pb <sup>-1</sup> |                      |
| H1 NC e⁻p   | 149 pb <sup>-1</sup> | JILF 03 (2012) 001   |
| H1 NC e⁺p   | 180 pb <sup>-1</sup> |                      |



#### breakdown of HERA-II data samples

|   |                           | R                                       | L                                       |
|---|---------------------------|-----------------------------------------|-----------------------------------------|
|   |                           | $\mathcal{L} = 47.3  \mathrm{pb}^{-1}$  | $\mathcal{L} = 104.4  \mathrm{pb}^{-1}$ |
| e | p                         | $P_e = (+36.0 \pm 1.0)\%$               | $P_e = (-25.8 \pm 0.7)\%$               |
|   | +                         | $\mathcal{L} = 101.3  \mathrm{pb}^{-1}$ | $\mathcal{L} = 80.7\mathrm{pb}^{-1}$    |
|   | $P_e = (+32.5 \pm 0.7)\%$ | $P_e = (-37.0 \pm 0.7)\%$               |                                         |

Complete the analyses of HERA high Q<sup>2</sup> inclusive structure function data

New published data increase  $\int\!\!\mathcal{L}$  by

- ~ factor 3 for e<sup>+</sup>p
- ~ factor 10 for e⁻p

much improved systematic uncertainties

HERAPDF2.0

### **HERA Structure Function Data**



| Data Set                                                             |                        | x Grid    |          | $Q^2/Ge$ | V <sup>2</sup> Grid | L                | $e^{+}/e^{-}$                  | $\sqrt{s}$ | $x,Q^2$ from | Ref.             | ]   |
|----------------------------------------------------------------------|------------------------|-----------|----------|----------|---------------------|------------------|--------------------------------|------------|--------------|------------------|-----|
|                                                                      |                        | from      | to       | from     | to                  | pb <sup>-1</sup> |                                | GeV        | equations    |                  |     |
| HERA I $E_p = 820 \text{ GeV}$ and $E_p = 920 \text{ GeV}$ data sets |                        |           |          |          |                     |                  |                                |            |              |                  |     |
| H1 svx-mb                                                            | 95-00                  | 0.000005  | 0.02     | 0.2      | 12                  | 2.1              | <i>e</i> <sup>+</sup> <i>p</i> | 301, 319   | 11,15,16     | [2]              | ]   |
| H1 low $Q^2$                                                         | 96-00                  | 0.0002    | 0.1      | 12       | 150                 | 22               | <i>e</i> <sup>+</sup> <i>p</i> | 301, 319   | 11,15,16     | [3]              |     |
| H1 NC                                                                | 94-97                  | 0.0032    | 0.65     | 150      | 30000               | 35.6             | <i>e</i> <sup>+</sup> <i>p</i> | 301        | 17           | [4]              | H   |
| H1 CC                                                                | 94-97                  | 0.013     | 0.40     | 300      | 15000               | 35.6             | <i>e</i> + <i>p</i>            | 301        | 12           | [4]              | d d |
| H1 NC                                                                | 98-99                  | 0.0032    | 0.65     | 150      | 30000               | 16.4             | <i>e</i> <sup>-</sup> <i>p</i> | 319        | 17           | [5]              | la  |
| H1 CC                                                                | 98-99                  | 0.013     | 0.40     | 300      | 15000               | 16.4             | <i>e</i> <sup>-</sup> <i>p</i> | 319        | 12           | [5]              | -   |
| H1 NC HY                                                             | 98-99                  | 0.0013    | 0.01     | 100      | 800                 | 16.4             | e <sup>-</sup> p               | 319        | 11           | [6]              |     |
| H1 NC                                                                | 99-00                  | 0.0013    | 0.65     | 100      | 30000               | 65.2             | <i>e</i> <sup>+</sup> <i>p</i> | 319        | 17           | [6]              | -   |
| H1 CC                                                                | 99-00                  | 0.013     | 0.40     | 300      | 15000               | 65.2             | <i>e</i> <sup>+</sup> <i>p</i> | 319        | 12           | [6]              |     |
| ZEUS BPC                                                             | 95                     | 0.000002  | 0.00006  | 0.11     | 0.65                | 1.65             | <i>e</i> <sup>+</sup> <i>p</i> | 300        | 11           | [10]             | 1   |
| ZEUS BPT                                                             | 97                     | 0.0000006 | 0.001    | 0.045    | 0.65                | 3.9              | <i>e</i> <sup>+</sup> <i>p</i> | 300        | 11,17        | [11]             |     |
| ZEUS SVX                                                             | 95                     | 0.000012  | 0.0019   | 0.6      | 17                  | 0.2              | <i>e</i> <sup>+</sup> <i>p</i> | 300        | 11           | [12]             |     |
| ZEUS NC                                                              | 96-97                  | 0.00006   | 0.65     | 2.7      | 30000               | 30.0             | <i>e</i> <sup>+</sup> <i>p</i> | 300        | 19           | [13]             |     |
| ZEUS CC                                                              | 94-97                  | 0.015     | 0.42     | 280      | 17000               | 47.7             | <i>e</i> <sup>+</sup> <i>p</i> | 300        | 12           | [14]             |     |
| ZEUS NC                                                              | 98-99                  | 0.005     | 0.65     | 200      | 30000               | 15.9             | e <sup>-</sup> p               | 318        | 18           | [15]             |     |
| ZEUS CC                                                              | 98-99                  | 0.015     | 0.42     | 280      | 30000               | 16.4             | e <sup>-</sup> p               | 318        | 12           | [16]             |     |
| ZEUS NC                                                              | 99-00                  | 0.005     | 0.65     | 200      | 30000               | 63.2             | <i>e</i> <sup>+</sup> <i>p</i> | 318        | 18           | [17]             |     |
| ZEUS CC                                                              | 99-00                  | 0.008     | 0.42     | 280      | 17000               | 60.9             | <i>e</i> <sup>+</sup> <i>p</i> | 318        | 12           | [18]             |     |
| HERA II $E_p = 920 \text{GeV}$                                       | <sup>7</sup> data sets | -         |          |          |                     |                  |                                | •          | -            | <u></u>          | 1   |
| H1 NC                                                                | 03-07                  | 0.0008    | 0.65     | 60       | 30000               | 182              | <i>e</i> <sup>+</sup> <i>p</i> | 319        | 11,17        | $[7]^1$          | 1   |
| H1 CC                                                                | 03-07                  | 0.008     | 0.40     | 300      | 15000               | 182              | <i>e</i> <sup>+</sup> <i>p</i> | 319        | 12           | [7] <sup>1</sup> |     |
| H1 NC                                                                | 03-07                  | 0.0008    | 0.65     | 60       | 50000               | 151.7            | e <sup>-</sup> p               | 319        | 11,17        | [7] <sup>1</sup> |     |
| H1 CC                                                                | 03-07                  | 0.008     | 0.40     | 300      | 30000               | 151.7            | e <sup>-</sup> p               | 319        | 12           | $[7]^1$          |     |
| H1 NC med $Q^2 * y.5$                                                | 03-07                  | 0.0000986 | 0.005    | 8.5      | 90                  | 97.6             | $e^+p$                         | 319        | 11           | [9]              |     |
| H1 NC low $\tilde{Q}^2 * y.5$                                        | 03-07                  | 0.000029  | 0.00032  | 2.5      | 12                  | 5.9              | $e^+p$                         | 319        | 11           | [9]              |     |
| ZEUS NC                                                              | 06-07                  | 0.005     | 0.65     | 200      | 30000               | 135.5            | $e^+p$                         | 318        | 11,12,18     | [21]             | 1   |
| ZEUS CC                                                              | 06-07                  | 0.0078    | 0.42     | 280      | 30000               | 132              | $e^+p$                         | 318        | 12           | [22]             |     |
| ZEUS NC                                                              | 05-06                  | 0.005     | 0.65     | 200      | 30000               | 169.9            | <i>e</i> <sup>-</sup> <i>p</i> | 318        | 18           | [19]             |     |
| ZEUS CC                                                              | 04-06                  | 0.015     | 0.65     | 280      | 30000               | 175              | <i>e</i> <sup>-</sup> <i>p</i> | 318        | 12           | [20]             |     |
| ZEUS NC nominal *y                                                   | 06-07                  | 0.000092  | 0.008343 | 7        | 110                 | 44.5             | $e^+p$                         | 318        | 11           | [23]             |     |
| ZEUS NC satellite * <sup>y</sup>                                     | 06-07                  | 0.000071  | 0.008343 | 5        | 110                 | 44.5             | <i>e</i> <sup>+</sup> <i>p</i> | 318        | 11           | [23]             |     |
| HERA II $E_p = 575 \text{GeV}$                                       | <sup>7</sup> data sets | •         |          | •        |                     | •                | •                              | •          | •            | <u> </u>         | 1   |
| H1 NC high $Q^2$                                                     | 07                     | 0.00065   | 0.65     | 35       | 800                 | 5.4              | $e^+p$                         | 252        | 11,17        | [8]              | 1   |
| H1 NC low $Q^2$                                                      | 07                     | 0.0000279 | 0.0148   | 1.5      | 90                  | 5.9              | $e^+p$                         | 252        | 11           | [9]              |     |
| ZEUS NC nominal                                                      | 07                     | 0.000147  | 0.013349 | 7        | 110                 | 7.1              | $e^+p$                         | 251        | 11           | [23]             | 1   |
| ZEUS NC satellite                                                    | 07                     | 0.000125  | 0.013349 | 5        | 110                 | 7.1              | $e^+p$                         | 251        | 11           | [23]             |     |
| HERA II $E_p = 460 \text{GeV}$ data sets                             |                        |           |          |          |                     |                  |                                |            |              |                  |     |
| H1 NC high $Q^2$                                                     | 07                     | 0.00081   | 0.65     | 35       | 800                 | 11.8             | $e^+p$                         | 225        | 11,17        | [8]              | 1   |
| H1 NC low $\tilde{Q^2}$                                              | 07                     | 0.0000348 | 0.0148   | 1.5      | 90                  | 12.2             | $e^+p$                         | 225        | 11           | [9]              |     |
| $\sim$ ZEUS NC nominal                                               | 07                     | 0.000184  | 0.016686 | 7        | 110                 | 13.9             | $e^+p$                         | 225        | 11           | [23]             | 1   |
| ZEUS NC satellite                                                    | 07                     | 0.000143  | 0.016686 | 5        | 110                 | 13.9             | $e^+p$                         | 225        | 11           | [23]             |     |

H1 & ZEUS have now published all datasets

- HERA-II measurements at high  $\int \mathcal{L}$ 

- reduced  $\sqrt{s}$  data

41 data sets to be combined:

- NC & CC cross sections

- e<sup>+</sup>p and e<sup>-</sup>p scattering

- 4 different  $\sqrt{s}$  values

2927 data points in total  $\rightarrow$  1307

In some cases 6 measurements combined

$$0.045 < Q^2 < 50,000 \text{ GeV}^2$$
  
 $6x10^{-7} < x < 0.65$ 

arXiv:1506.06042

Eram Rizvi

### H1 & ZEUS Data Combination





### H1 & ZEUS Data Combination

*i* data points *j* systematic error sources Correlated uncertainties treated multiplicative: size proportional to central averaged value True for normalisation uncertainties Perhaps not true for other uncertainties

$$\chi^{2}_{tot}(\mathbf{m}, \mathbf{b}) = \sum_{i} \frac{[\mu^{i} - m^{i}(1 - \sum_{j} \gamma^{i}_{j} b_{j})]^{2}}{\delta^{2}_{i,stat} \mu^{i} m^{i}(1 - \sum_{j} \gamma^{i}_{j} b_{j}) + (\delta_{i,unc} m^{i})^{2}} + \sum_{j} b_{j}^{2}$$

- $\mu^i$  = measurement
- $m^i$  = averaged value
- $\gamma^{i_{j}}$  = correlated relative (%) sys uncertainty on point *i* from error source *j*
- *b<sub>j</sub>* = systematic error source strength nuisance parameter left free in fit but constrained no extra degrees of freedom due to additional constraint

For HERAPDF2.0 number of correlated error sources j = 169These include:

b/g uncertainty luminosity uncertainty EM calibration scale had calibration scale

etc....

Extra procedural uncertainty included: difference between using additive vs multiplicative correlated uncertainties (except normalisation)  $\Rightarrow$  extra ~0.5% uncertainty

Are correlated point-to-point within a single measurement

Reported in detail in individual publications from experiments

May also be correlated across measurements

May also be correlated between H1 & ZEUS (e.g. had scale & photo-production b/g)

### H1 & ZEUS Data Combination





Overall  $\chi^2$ /ndf = 1685 / 1620 = 1.04

Pulls defined for each measurement difference between measured & average values after applying sys shifts *b<sub>j</sub>* in units of uncorrelated uncertainty

Pulls of the data points should be distributed as a unit Gaussian

Each measurement channel shows pull centred on zero & unit width

pulls of the systematic sources bj



### **Combined NC Cross Sections**





only 6 x bins shown here factor 10 more data than HERA-I data sets NC e<sup>+</sup>p data systematically limited

#### $\chi^2$ / ndf = 1687 / 1620

high precision reached over large kinematic range better than 1.3% Q<sup>2</sup> < 400 GeV<sup>2</sup>

### **Combined CC Cross Sections**





Large improvement in statistical limitations of individual data sets from H1 & ZEUS

Eram Rizvi



- Parameterise PDFs at arbitrary starting scale Q<sub>0</sub><sup>2</sup>
- Perturbative QCD evolution equations allows PDFs to be determined at any other scale Q<sup>2</sup>
- Calculate theory cross section at given x,Q<sup>2</sup> of measurement
- $\bullet$  Compare data & theory via  $\chi^2$  function
- Minimise χ<sup>2</sup> function with respect to PDF parameters ~ 2000 iterations



## HERAPDF 2.0



#### HERAPDF1.0 & 1.5

Combine NC and CC HERA-I data from H1 & ZEUS Complete MSbar NLO fit NLO: standard parameterisation with10 parameters

NNLO HERAPDF 1.5 with 14p

#### HERAPDF2.0

Include additional NC and CC HERA-II combined data Complete MSbar NLO and NNLO fit NLO & NNLO fits require15 parameters

$$xf(x,Q_{0}^{2}) = A \cdot x^{B} \cdot (1-x)^{C} \cdot (1+Dx+Ex^{2})$$

$$xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}}, \qquad xg(x) = A_{g}x^{B_{g}}(1-x)^{C_{g}} - A'_{g}x^{B_{g}}(1-x)^{C_{g}},$$

$$xu_{v} \quad xU = xu + xc \qquad xu_{v}(x) = A_{u_{v}}x^{B_{u}}(1-x)^{C_{u_{v}}}(1+E_{u_{v}}x^{2}), \qquad xu_{v}(x) = A_{u_{v}}x^{B_{u}}(1-x)^{C_{u_{v}}},$$

$$x\overline{U} = x\overline{u} + x\overline{c} \qquad x\overline{u_{v}(x)} = A_{d_{v}}x^{B_{d}}(1-x)^{C_{d}}, \qquad xd_{v}(x) = A_{d_{v}}x^{B_{d}}(1-x)^{C_{u_{v}}},$$

$$x\overline{U} = x\overline{u} + x\overline{c} \qquad x\overline{U}(x) = A_{d_{v}}x^{B_{d}}(1-x)^{C_{d}}, \qquad xd_{v}(x) = A_{d_{v}}x^{B_{d}}(1-x)^{C_{d}},$$

$$x\overline{D} = x\overline{d} + x\overline{s} \qquad x\overline{D}(x) = A_{D}x^{B_{D}}(1-x)^{C_{D}}, \qquad x\overline{D}(x) = A_{D}x^{B_{d}}(1-x)^{C_{d}},$$

$$x\overline{D}(x) = A_{D}x^{B_{D}}(1-x)^{C_{D}}, \qquad x\overline{D}(x) = A_{D}x^{B_{D}}(1-x)^{C_{D}},$$

$$x\overline{x} = f_{s}x\overline{D} \text{ strange sea is a fixed fraction  $f_{s} \text{ of } D \text{ at } Q_{0}^{2}$ 

$$x\overline{s} = f_{s}x\overline{D} \text{ strange sea is a fixed fraction  $f_{s} \text{ of } D \text{ at } Q_{0}^{2}$ 

$$Apply momentum/counting sum rules: \qquad B_{\overline{U}} = B_{\overline{D}} \qquad Q_{\overline{u}in}^{2} = 3.5 \text{ or } 10 \text{ } GeV^{2}$$

$$A_{U} = A_{D}(1-f_{s}) \qquad A_{U} = A_{D}(1-f_{s}) \qquad A_{s}(M_{z}^{2}) = 0.118$$

$$\int_{0}^{1} dx \cdot u_{v} = 2 \qquad \int_{0}^{1} dx \cdot d_{v} = 1 \qquad \text{ensures } x\overline{u} \to x\overline{d} \text{ as } x \to 0$$

$$2 \cdot 10^{-4} \le x \le 0.65$$$$$$

Eram Rizvi



$$\begin{aligned} xg(x) &= A_g x^{B_g} (1-x)^{C_g} - A'_g x^{B'_g} (1-x)^{C'_g}, \\ xu_v(x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1 + E_{u_v} x^2\right), \\ xd_v(x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\bar{U}(x) &= A_{\bar{U}} x^{B_{\bar{U}}} (1-x)^{C_{\bar{U}}} (1 + D_{\bar{U}} x), \\ x\bar{D}(x) &= A_{\bar{D}} x^{B_{\bar{D}}} (1-x)^{C_{\bar{D}}}. \end{aligned}$$

fixed or constrained by sum-rules parameters set equal but free

NC structure functions

$$F_2 = \frac{4}{9} \left( xU + x\bar{U} \right) + \frac{1}{9} \left( xD + x\bar{D} \right)$$
$$xF_3 \sim xu_v + xd_v$$

CC structure functions

$$W_2^- = x(U + \overline{D}), \qquad \qquad W_2^+ = x(\overline{U} + D)$$
$$xW_3^- = x(U - \overline{D}), \qquad \qquad xW_3^+ = x(D - \overline{U})$$

Additional parameters:

heavy quark masses  $M_c$  and  $M_b$  are optimised

 $f_s = 0.4 \Rightarrow$  compromise value between unsuppressed ( $f_s = 0.5$ ) and 'default' strange sea from dimuon data

$$\chi_{tot}^{2}(\mathbf{m}, \mathbf{b}) = \sum_{i} \frac{[\mu^{i} - m^{i}(1 - \sum_{j} \gamma_{j}^{i} b_{j})]^{2}}{\delta_{i,stat}^{2} \mu^{i} m^{i}(1 - \sum_{j} \gamma_{j}^{i} b_{j}) + (\delta_{i,unc} m^{i})^{2}} + \sum_{j} b_{j}^{2} + \sum_{i} \ln \frac{\delta_{i,unc}^{2} m_{i}^{2} + \delta_{i,stat}^{2} \mu^{i} m^{i}}{\delta_{i,unc}^{2} \mu_{i}^{2} + \delta_{i,stat}^{2} \mu_{i}^{2}}$$

modified  $\chi^2$  definition includes In term to account for likelihood transition to  $\chi^2$  after error scaling



| Experimental Uncertainties                                                               | Variation                                | Standard Value | Lower Limit | Upper Limit |
|------------------------------------------------------------------------------------------|------------------------------------------|----------------|-------------|-------------|
| Hessian method uses 14 eigenvector pairs                                                 | $Q_{\rm min}^2  [{ m GeV}^2]$            | 3.5            | 2.5         | 5.0         |
| Standard definition $\Delta \chi^2 = 1$ for 66% CL error bands                           | $Q_{\rm min}^2$ [GeV <sup>2</sup> ] HiQ2 | 10.0           | 7.5         | 12.5        |
| Model Assumptions                                                                        | $M_c(\text{NLO})$ [GeV]                  | 1.47           | 1.41        | 1.53        |
| Variation of charm and bottom quark masses $M_c$ , $M_b$                                 | $M_c$ (NNLO) [GeV]                       | 1.43           | 1.37        | 1.49        |
| Variation of Q <sup>2</sup> minimum cut used on input data Q <sup>2</sup> <sub>min</sub> | $M_b$ [GeV]                              | 4.5            | 4.25        | 4.75        |
| Variation of Strange quark fraction is                                                   | $f_s$                                    | 0.4            | 0.3         | 0.5         |
| Parameterisation Uncertainties                                                           | $\alpha_s(M_Z^2)$                        | 0.118          | _           | _           |
| Variation of $Q_0^2$                                                                     | $\mu_{f_0}$ [GeV]                        | 1.9            | 1.6         | 2.2         |
| variation of he doing additional roth parameter                                          |                                          |                |             |             |

 $\alpha_s(M_Z^2)$  is fixed but series of PDFs provided scanning large range in value: 0.110 to 0.130

Experimental uncertainties also checked using RMS spread of 400 replica fits

### **NC Cross Sections**







Neutral Current e<sup>±</sup>p

Charged Current e<sup>±</sup>p



- Difference in NC at high x for  $e^{\scriptscriptstyle +}$  and  $e^{\scriptscriptstyle -}$  is due to  $xF_3$  and Z boson exchange  $\rightarrow$  valence quarks
- CC e<sup>+</sup>p suppressed at high x due to (1-y)<sup>2</sup> helicity suppression of quarks at high y,Q<sup>2</sup> & fixed x
- CC e<sup>-</sup>p unaffected as helicity suppression applies to anti-quarks
- HERAPDF2.0 describes high x data well for both NC and CC channels





Measure integral of 
$$xF_3^{\gamma Z}$$
 - validate sumrule:  
$$\int_{0.016}^{0.725} dx \ F_3^{\gamma Z}(x, Q^2 = 1500 \,\text{GeV}^2) = 1.314 \pm 0.057(\text{stat}) \pm 0.057(\text{syst})$$

LO integral predicted to be  $5/3 + \mathcal{O}(\alpha_s/\pi)$ 

### High Q<sup>2</sup> CC Cross Sections

 $Q^2 = 500 \text{ GeV}^2$ 

 $Q^2 = 3000 \text{ GeV}^2$ 

 $Q^2 = 30000 \text{ GeV}^2$ 

10<sup>-1</sup>

10<sup>-2</sup>

 $O^2 = 1000 \text{ GeV}^2$ 

 $Q^2 = 5000 \text{ GeV}^2$ 

10<sup>-1</sup>

 $\sqrt{s} = 318 \text{ GeV}$ 

 $10^{-2}$ 

#### **Electron scattering**

 $Q^2 = 300 \text{ GeV}^2$ 

 $Q^2 = 2000 \text{ GeV}^2$ 

 $O^2 = 15000 \text{ GeV}^2$ 

10<sup>-1</sup>

 $\sigma_{r,\,CC}^{-}$ 

1

0

1

0.5

0

0.8

0.6

0.4

0.2

0

 $10^{-2}$ 

Positron scattering



HERA-I precision of 10-15% for e+p

X<sub>Ri</sub> Combination of high Q<sup>2</sup> CC data (HERA-I+II) Improvement of total uncertainty Dominated by statistical errors Provide important flavour decomposition information

10<sup>-2</sup>

#### Eram Rizvi

# HERAPDF 2.0 (NLO Fit)





### **HERAPDF 2.0 Comparison to Other PDFs**





Comparison of HERAPDF2.0 vs MMHT14 , NNPDF3.0 , CT10 (others use only HERA-1 combined data) Differences at high x

- New HERA combined data improve precision at high x, Q<sup>2</sup>
- HERAPDF uses proton target data only  $\rightarrow$  no nucleon / deuterium data
- Softer gluon at high x

### HERAPDF 2.0 Jets



Inclusive jet + charm cross sections in ep collisions are sensitive to xg and  $\alpha_{s}$ 

Separate H1 & ZEUS measurements are added to HERAPDF2.0  $\rightarrow$  HERAPDF2.0-Jets



 $\chi^2$ -  $\chi^2_{min}$ 

40

NLO

inclusive + charm + jet data, Q<sup>2</sup><sub>min</sub> = 3.5 GeV<sup>2</sup>
 □ inclusive + charm + jet data, Q<sup>2</sup><sub>min</sub> = 10 GeV<sup>2</sup>

▲ inclusive + charm + jet data,  $Q_{min}^2 = 20 \text{ GeV}^2$ 



#### Electroweak symmetry breaking



- H1 / ZEUS completed their final SF measurements
- New HERA-II data provide tighter constraints at high x /  $Q^2$
- These data provide some of the most stringent constraints on PDFs
- $\bullet$  Stress-test of QCD over 4 orders of mag. in  $\mathsf{Q}^2$
- DGLAP evolution works very well
- HERA data provide a self-consistent data set for complete flavour decomposition of the proton
- Final combination of HERA data completed
- HERAPDF2.0 QCD fit at NLO & NNLO





### HERAPDF



#### HERAPDFI.0

Combine NC and CC HERA-I data from HI & ZEUS Complete MSbar NLO fit NLO: standard parameterisation with 10 parameters  $\alpha_s = 0.1176$  (fixed in fit)

desy-09-158

#### HERAPDFI.5

Include additional NC and CC HERA-II data Complete MSbar NLO and NNLO fit NLO: standard parameterisation with10 parameters <u>HERAPDF1.5f</u> NNLO: extended fit with 14 parameters

$$xf(x,Q_0^2) = A \cdot x^B \cdot (1-x)^C \cdot (1+Dx+Ex^2)$$
HI-10-142 / ZEUS-prel-10-018

$$\begin{array}{rcl} xg & xg & xg & xg(x) &= A_g x^{B_g} (1-x)^{C_g}, \\ xu_v & xU = xu + xc & xu_v (x) &= A_{u_v} x^{B_{u_v}} (1-x)^{C_{u_v}} \left(1+E_{u_v} x^2\right), \\ xd_v & \longrightarrow & xD = xd + xs & & & & \\ x\overline{U} & x\overline{U} = x\overline{u} + x\overline{c} & xd_v (x) &= A_{d_v} x^{B_{d_v}} (1-x)^{C_{d_v}}, \\ x\overline{U} & x\overline{U} = x\overline{u} + x\overline{c} & x\overline{U} (x) &= A_{\overline{U}} x^{B_{\overline{U}}} (1-x)^{C_{\overline{U}}}, \\ x\overline{D} & x\overline{D} = x\overline{d} + x\overline{s} & x\overline{D} (x) &= A_{\overline{D}} x^{B_{\overline{D}}} (1-x)^{C_{\overline{D}}}. \end{array}$$

 $x\overline{s} = f_s x\overline{D}$  strange sea is a fixed fraction  $f_s$  of  $\overline{D}$  at  $Q_0^2$ 

Apply momentum/counting sum rules:

$$\int_{0}^{1} dx \cdot (xu_{v} + xd_{v} + x\overline{U} + x\overline{D} + xg) = 1$$
$$\int_{0}^{1} dx \cdot u_{v} = 2 \qquad \int_{0}^{1} dx \cdot d_{v} = 1$$

Parameter constraints:  $B_{uv} = B_{dv}$   $B_{Ubar} = B_{Dbar}$ sea = 2 x (Ubar +Dbar) Ubar = Dbar at x=0  $Q_0^2 = 1.9 \text{ GeV}^2$  (below  $m_c$ )  $Q^2 > 3.5 \text{ GeV}^2$  $2 \times 10^{-4} < x < 0.65$ Fits performed using RT-VFNS

Eram Rizvi





# **Optimisation of Heavy Quark Masses**





# HERAPDF 2.0 HiQ2 ( $Q^{2}_{min} > 10 \text{ GeV}^{2}$ )





Figure 20: The dependence of  $\chi^2$ /d.o.f. on  $Q_{\min}^2$  for HERAPDF2.0 fits using a) the RTOPT [83], FONNL-B [90], ACOT [109] and fixed-flavour (FF) schemes at NLO and b) the RTOPT and FONNL-B/C [91] schemes at NLO and NNLO. The  $F_L$  contributions are calculated using matrix elements of the order of  $\alpha_s$  indicated in the legend. The number of degrees of freedom drops from 1148 for  $Q_{\min}^2 = 2.7 \text{ GeV}^2$  to 1131 for the nominal  $Q_{\min}^2 = 3.5 \text{ GeV}^2$  and to 868 for  $Q_{\min}^2 = 25 \text{ GeV}^2$ .

# HERAPDF 2.0 (NLO vs NNLO Fit)











|                                  |                                  | 2        | 1 2    | 2              |
|----------------------------------|----------------------------------|----------|--------|----------------|
| HERAPDF                          | $Q_{\min}^2$ [GeV <sup>2</sup> ] | $\chi^2$ | d.o.f. | $\chi^2/d.o.f$ |
| 2.0 NLO                          | 3.5                              | 1357     | 1131   | 1.200          |
| 2.0HiQ2 NLO                      | 10.0                             | 1156     | 1002   | 1.154          |
| 2.0 NNLO                         | 3.5                              | 1363     | 1131   | 1.205          |
| 2.0HiQ2 NNLO                     | 10.0                             | 1146     | 1002   | 1.144          |
| 2.0 AG NLO                       | 3.5                              | 1359     | 1132   | 1.201          |
| 2.0HiQ2 AG NLO                   | 10.0                             | 1161     | 1003   | 1.158          |
| 2.0 AG NNLO                      | 3.5                              | 1385     | 1132   | 1.223          |
| 2.0HiQ2 AG NNLO                  | 10.0                             | 1175     | 1003   | 1.171          |
| 2.0 NLO FF3A                     | 3.5                              | 1351     | 1131   | 1.195          |
| 2.0 NLO FF3B                     | 3.5                              | 1315     | 1131   | 1.163          |
| 2.0 Jets $\alpha_s(M_Z^2)$ fixed | 3.5                              | 1568     | 1340   | 1.170          |
| 2.0 Jets $\alpha_s(M_Z^2)$ free  | 3.5                              | 1568     | 1339   | 1.171          |

Table 11: The values of  $\chi^2$  per degree of freedom for HERAPDF2.0 and its variants.