

Recent HERA results on diffraction and exclusive final states

A. Solano

Univ. of Torino and INFN

On behalf of the H1 and ZEUS Collaborations

Outline:

- Dijet production in diffractive DIS [H1 JHEP 03 (2015) 092]
- Diffractive dijets with a leading proton [H1 JHEP 05 (2015) 056]
- Exclusive dijet production in diffractive DIS [ZEUS DESY-15-070, sent to EPJC]
- Diffractive photoproduction of isolated ("prompt") photons [ZEUS-prel-15-001]
- Cross section ratio $\Psi^{\prime}(2S)/J/\Psi(1S)$ in exclusive DIS [ZEUS-prel-15-003]
- Exclusive ρ^0 photoproduction with a leading neutron [H1 DESY-15-120, sent to EPJC]

HERA experiments

p:820 GeV 920 GeV HERA-II: 2001-2007 p: 920 GeV 575 GeV 460 GeV Most of the collected data are at $\sqrt{s} = 318 \text{ GeV}$

~0.5 fb⁻¹ per experiment collected by H1 and ZEUS Final analyses of HERA data are underway

Diffractive events contribute up to 15% of the inclusive DIS cross section

Inclusive and exclusive diffraction

- Q^2 = virtuality of exchanged photon
- **x** = Bjorken scaling variable
- **y** = inelasticity of virtual photon
- **W** = invariant mass of γ^* -p system
- M_X = invariant mass of γ^* -IP system
- $\boldsymbol{\beta} = x/x_{\text{IP}}$ = fraction of IP momentum carried by struck parton
- t = (4-momentum exchanged at p vertex)²
 typically: |t| < 1 GeV²
- \mathbb{V} N = proton \rightarrow Single Diffractive (SD) events
- ♦ N = proton dissociative system → Double Diffractive (DD) events

Signatures and selection methods

64

ZEUS LPS

(1994-2000)

24

40

Proton Spectrometer (PS) method H1-FPS (1997-2007) H1-VFPS (2005-2007) p' 90.80 220PROS: no DD

direct measurement of t and x_{IP} high x_{IP} accessible

CONS: low statistics

pQCD framework as long as a hard scale is present:

QCD factorisation theorem, proven for DDIS by J.Collins [PR D57 (1998) 3051]

$$\sigma^{D}(\gamma^{*}p \to Xp) = \sum_{i} \hat{\sigma} \otimes f_{i}^{D}(x_{IP}, t, z, Q^{2})$$

Hard subprocess ME

DPDFs = proton PDFs when a fast proton is in the final state, universal for diffractive DIS processes

Proton-vertex factorisation assumption, supported by H1 and ZEUS data

$$f_{i}^{D}(x_{IP},t,z,Q^{2}) = f_{IP}(x_{IP},t)f_{i}^{IP}(z,Q^{2}) + f_{IR}(x_{IP},t)f_{i}^{IR}(z,Q^{2})$$
Flux parametrisation
$$f(x_{IP},t) = \frac{Ae^{Bt}}{x_{IP}^{2\alpha(t)-1}}$$
With $\alpha(t) = \alpha(0) + \alpha't$
Pomeron PDFs
Reggeon PDFs taken from pion (GRV)

 $\longrightarrow \ \text{Use inclusive diffractive data to extract DPDFs via NLO QCD fits,} \\ fitting z and Q² dependence at fixed x_{IP} and t (z = momentum fraction of the diffrection exchange entering the hard scattering)$

Factorisation tests in dijet production

Use DPDFs extracted from inclusive DDIS for calculating NLO QCD predictions to semi-inclusive final states — test universality of DPDFs

DIS regime (Q² > 1 GeV²):

Several H1 and ZEUS measurements of dijet (but also open charm) production in DIS **confirmed factorisation**

New H1 measurement with 6x larger statistics than previous data sets

Dijets in diffractive DIS

LRG method; $4 < Q^2 < 100 \text{ GeV}^2$; $x_{IP} < 0.03$; $E_T^{\text{jet1}(2)} > 5.5$ (4) GeV

Measurements in agreement with NLO QCD calculations, factorisation confirmed

ZEUS

Dijets in diffractive DIS

 $\implies \alpha_{\rm S}({\rm M_Z}) = 0.119 \pm 0.004 \text{ (exp)} \pm 0.012 \text{ (DPDF, theo)}$ Result is consistent within uncertainties with the world average

Use DPDFs extracted from inclusive DDIS for calculating NLO QCD predictions to semi-inclusive final states — test universality of DPDFs

DIS regime (Q² > 1 GeV²):

Several H1 and ZEUS measurements of dijet (but also open charm) production in DIS **confirmed factorisation**

New H1 measurement with 6x larger statistics than previous data sets

Photoproduction regime (Q² ~ 0):

Factorisation is not expected to hold for diffractive photoproduction, in particular resolved photoproduction where the photon behaves as a hadron Factorisation was proved to be **broken in hadron-hadron collisions** at **Tevatron** and **LHC** with a "suppression factor" S² (= data/NLO) ~ 0.1

Previous measurements gave different results:

- H1: LRG method, tagged γp, $E_T^{jet1(2)} > 5(4)$ GeV S² = 0.58 ± 0.12(exp) ± 0.14(scale) ± 0.09(DPDFs), indicating factorisation breaking
- **ZEUS**: LRG method, untagged γp , $E_T^{jet1(2)} > 7.5(6.5)$ GeV $S^2 \sim 1$, compatible with factorisation

ZEUS, NP B831 (2010) 1

H1, EPJ C70 (2010) 15

New H1 measurement using data with protons measured in the VFPS

Quasi-real photons ($Q^2 \sim 0$) can develop a hadronic structure

Diffractive dijets with a leading proton

γp

ŧ

0.8

ZIP

PS method with VFPS; $0.01 < x_{IP} < 0.024$; $|t| < 0.6 \text{ GeV}^2$; $z_{IP} < 0.8$ $E_T^{\text{jet1}(2)} > 5.5(4) \text{ GeV}$; -1< $\eta_{\text{iet 1}(2)} < 2.5$ DIS: $4 < Q^2 < 100 \text{ GeV}^2$; $\gamma p: Q^2 < 2 \text{ GeV}^2$

Double ratio photoproduction/DIS: 0.511 ± 0.085(data) ± 0.022/0.021(theo)

27/09/2015 ICNFP2015 - Recent HERA results on diffraction and exclusive final states - A. Solano

results seems not connected with E_{T}

Exclusive dijets in diffractive DIS

The measurement of $e + p \rightarrow e' + p' + jet + jet$ with only dijet, electron and proton in the final state is sensitive to the **nature of the diffractive exchange** and is a promising reaction to **probe off-diagonal (generalised) gluon distribution**

Resolved pomeron model

Two-gluon exchange model

Cross section proportional to square of the gluon density of the proton: predictions based on the GRV parameterisation of the proton gluon density

Models can be distinguished by the theoretical prediction for the distribution of Φ – angle between lepton and jet planes

 $d\sigma/d\Phi \propto 1 + A \cos(2\Phi)$ [Bartels et al., PLB 386 (1996) 389]

- Resolved pomeron model A positive
- Two-gluon exchange model **A negative**

 $e + p \rightarrow e' + p' + jet + jet$ with only dijet, electron and proton in the final state Durham jet algorithm in γ^* IP rest frame in exclusive mode – **all objects in jets** ZEUS

Proton dissociation background: $f_{diss} = 45\% \pm 4\%(stat.) \pm 15\%(syst.)$ Cross section unfolded as a function of β and $\Phi,$ reweighted by $(1-f_{\text{diss}}$)

Contribution from the $q\overline{q}g$ final state at low β :

As a result, A is expected to turn from positive to negative going from low to high β values

Normalization difference might indicate:

- NLO corrections large ?
- contribution of off-diagonal gluon distribution large ?

Two-gluon exchange model predicts reasonably well the measured value of A as a function of β for $\beta > 0.3$

β

ZEUS

Diffractive photoproduction of isolated y's

"**Prompt**": high- p_T photon produced in a hard partonic interaction

In diffractive photoproduction:

Photon must couple to a charged particle explore the non-gluonic nature of the pomeron

Measure diffractive "prompt" photons **inclusively and with an accompanying jet**, using HERA II (374 pb⁻¹) and HERA I (91 pb⁻¹, only for normalization)

Photons : $E_t^{\gamma} > 5 \text{ GeV}$	Jets : k _T -cluster algorithm	Diffractive selection with
-0.7 < η ^γ < 0.9	$E_t^{jet} > 4 \text{ GeV}$	LRG method : η _{max} < 2.5
"isolated"	-1.5 < η ^{jet} < 1.8	x _{IP} < 0.03

MC: **RAPGAP** with H1 fitB DPDFs and γ-PDF SASG 1D LO (for the resolved photon)

Diffractive photoproduction of isolated γ's

η_{max} well modeled in HERA I data, used to **remove non-diffractive background**

Diffractive photoproduction of isolated γ **'s**

ZEUS 4.5 dơ/dz_{lp} (pb) ZEUS (prel.) 374 pb⁻¹ Rapgap 3.5 3 2.5 2 1.5 γ + jet 1 0.5 0 0.2 0.3 0.4 0.5 0.6 0.7 0.9 0 0.1 0.8 ZIP

Data show a **sharp peak at z_{IP} \sim 1** which is not described by RAPGAP [$z_{IP} \sim 1$: no activity except jet and γ]

RAPGAP gives a reasonable description of most of the variables **Most photons are accompanied by a jet** ZEUS

$\Psi'(2S)/J/\Psi(1S)$ in exclusive DIS

$\Psi'(2S)/J/\Psi(1S)$ in exclusive DIS

ZEUS

$\Psi'(2S)/J/\Psi(1S)$ in exclusive DIS

Comparison with H1 earlier measurement and with models

H1, EPJ C10 (1999) 373

HIKT, Hufner et al.:dipole model, dipole-proton constrained by inclusive DIS data AR, Armesto and Rezaeian: impact parameter dependent CGC and IP-Sat model KMW,Kowalski Motyka Watt: QCD description and universality of quarkonia production FFJS, Fazio et al.: two component Pomeron model KNNPZZ, Nemchik et al.: color-dipole cross section derived from BFKL generalised eq. LM, Lappi and Mäntysaari : dipole picture in IP-Sat model ZEUS

Exclusive photoproduction of ρ⁰ mesons with a leading neutron

In $e + p \rightarrow e' + n + X$ the production of neutrons carrying a large fraction of the proton beam momentum is dominated by the **pion exchange process**

 $\implies \text{Extract } \sigma(\gamma \pi^+ \rightarrow \rho^0 \pi^+)$

Mean W ~ 24 GeV \rightarrow soft regime

Theoretically: exchange of two Regge trajectories in a Double Peripheral Process (DPP)

Leading neutron measured in the Forward Neutron Calorimeter (FNC)

Cross section measurement:

 $\begin{array}{l} 20 < W_{\gamma \rho} < 100 \; \text{GeV} \\ |t'| < 1 \; \text{GeV}^2 \\ 2m_{\pi} < M_{\rho} < M_{\rho} + 5\Gamma_{\rho} \\ 0.35 < x_L < 0.95 \\ \theta_n < 0.75 \; \text{mrad} \\ \text{Background due to proton dissociation} \\ \text{subtracted: } f_{bq} = 0.34 \pm 0.05 \end{array}$

Exclusive photoproduction of ρ⁰ mesons with a leading neutron

x_L distribution of the leading
neutron generally well described
– some pion fluxes disfavoured

Instead **none of the models can reproduce the t dependence** of the leading neutron – effect of absorptive corrections ?

low-t' to high-t' region, as expected for a double-peripheral process

 $\sigma(\gamma \pi^+)/\sigma(\gamma p) = 0.25 \pm 0.06$ in agreement with a previous ZEUS measurement [ZEUS, NP B637 (2002) 3] Significantly lower than expected, suggesting large absorption corrections

Summary

- New H1 measurement of diffractive dijet production in DIS with 6x larger statistics than previous measurements: data in agreement with NLO QCD predictions using H1 DPDFs, confirming factorisation in diffractive DIS; α_S(M_Z) extracted, in agreement with world average
- Diffractive dijets in photoproduction and DIS measured by H1 using the VFPS: DIS data in agreement with NLO QCD predictions; photoproduction data show a suppression factor ~ 0.5 ± 0.1, consistent with factorisation breaking. Tension with ZEUS measurements, which show no evidence of suppression, persists
- First ZEUS measurement of exclusive dijets in diffractive DIS: measured cross sections significantly larger than predicted by models; Two-gluon-Exchange model more successful than the Resolved-Pomeron model in describing the measured value of A as a function of β
- Diffractive photoproduction of prompt photons, inclusive and with an accompanying jet, measured by ZEUS: process dominated by direct photons; data show a sharp peak at z_{IP} ~ 1 which is not described by the MC
- Cross section ratio ψ'/J/ψ measured by ZEUS with full HERA statistics: ratio grows with Q² and is constant with W and t
- Exclusive ρ^0 photoproduction associated with a leading neutron measured by H1: used to extract the elastic cross section $\sigma(\gamma \pi^+ \rightarrow \rho^0 \pi^+)$ for the first time at HERA, which suggests large absorption corrections

Backup slides

Dijets in diffractive photoproduction

ZEUS da/dx_y^{obs} (pb) ZEUS diff dijet yp 99-00 (a) 500 energy scale uncertainty ZEUS DPDF SJ DPDF exp. uncertainty H1 Fit 2007 Jets × 0.81 400 300 200 100 scale denendence 0.5 0 0.4 0.6 0.8 $\mathbf{X}_{\gamma}^{obs}$ atio to ZEUS DPDF SJ (b) ZEUS diff dijet yp 99-00 1.4 ZEUS DPDE SI DPDF exp. uncertainty H1 Fit 2007 Jets x 0.81 0.8 0.6 1 x^{obs} 0.4 0.6 0.8

ZEUS, NP B831 (2010) 1

ZEUS: no evidence for a gap suppression

H1, EPJ C70 (2010) 15

H1: data/NLO = $0.58 \pm 0.12(exp) \pm 0.14(scale) \pm 0.09(DPDF)$

Both H1 and ZEUS see **no difference between direct and resolved regions** and prefer a global suppression factor

ZEUS has higher jet- E_T cuts than H1: $E_T^{1(2)} > 7.5(6.5)$ GeV²