Final ep DIS cross sections from H1 and ZEUS

HERAPDF2.0

Kreuth, 8.10.2015

I.Abt, MPI München

Content

- Deep Inelastic Scattering
- Cross Sections
- Parton Distribution Functions
 HERAPDF2.0
- Proton Structure ?
 - Photon Structure ?
- Fruits of Precision
- Summary & Outlook

DISCLAIMER

I will not try to be complete on any subject. I have selected what I saw fit to make my point. Any opinion is only mine and is in no way supported by either **ZEUS or H1 or probably anybody else. Nevertheless I am proud to represent** H1 and ZEUS.

And I am sorry, if I should disturb you doing your Email or reading your favorite newspaper.

Deep Inelastic Scattering

Sorry, I do not have time for formulas.....

Wildbad Kreuth, 8.10.2015

Iris Abt, MPI München

Deep Inelastic Scattering

This can rebuild itself

The Microscope

The Microscope

That is what we measure!

Kinematics

Factorisation

Decompose cross section:

Structure Functions

 $e^{\pm}p$ $\sigma_{r,\mathrm{NC}}^{\pm} = \frac{\mathrm{d}^2 \sigma_{\mathrm{NC}}^{e^{\pm}p}}{\mathrm{d} r \mathrm{d} O^2} \cdot \frac{Q^4 x}{2\pi \alpha^2 Y_{\perp}} = \tilde{F}_2 \mp \frac{Y_-}{Y_-} x \tilde{F}_3 - \frac{y^2}{Y_-} \tilde{F}_L$ tree level Z, y $Y_{\pm} = 1 \pm (1 - y)^2$ q NC $\tilde{F}_2 = F_2 - \kappa_Z v_e \cdot F_2^{\gamma Z} + \kappa_Z^2 (v_e^2 + a_e^2) \cdot F_2^Z$ $\tilde{F}_L = F_L - \kappa_Z v_e \cdot F_T^{\gamma Z} + \kappa_Z^2 (v_e^2 + a_e^2) \cdot F_T^Z$ vector a_{e} axial-vector eZ weak couplings $x\tilde{F}_3 = \kappa_Z a_e \cdot xF_3^{\gamma Z} - \kappa_Z^2 \cdot 2v_e a_e \cdot xF_3^Z$ $\kappa_{z}(Q^{2}) = Q^{2} / [(Q^{2} + M_{z}^{2})(4\sin^{2}\theta_{W}\cos^{2}\theta_{W})]$ (2)**OPM** $\tilde{F}_L = 0$ $(F_2, F_2^{\gamma Z}, F_2^Z) = [(e_u^2, 2e_uv_u, v_u^2 + a_u^2)(xU + x\overline{U}) + (e_d^2, 2e_dv_d, v_d^2 + a_d^2)(xD + x\overline{D})]$ $(xF_{3}^{\gamma Z}, xF_{3}^{Z}) = 2[(e_{u}a_{u}, v_{u}a_{u})(xU - xU) + (e_{d}a_{d}, v_{d}a_{d})(xD - xD)]$ xU = xu + xc $x\overline{U} = x\overline{u} + x\overline{c}$ xD = xd + xs $x\overline{D} = x\overline{d} + x\overline{s}$ sea quarks = anti-quarks $xu_n = xU - xU$ $xd_v = xD - xD$ valence quark distributions

Structure Functions

NC and CC yield valence and sea quark distribution. QCD analysis [DGLAP] yields gluon distribution.

2010: H1 and ZEUS publish combined 12results on data taken, 1993 to 2000.

10 years of fighting to understand detectors, methods and systematics.

2015: $2^{1.8}$ H1 and ZEUS $5^{1.6}$ publish combined 1.4results on data taken.2 1993 to 2007. 1

8 years of fighting to understand detectors, methods and systematics.

We got faster and $\sigma \rightarrow$ reduced σ

41 data sets taken over 14 years **162 correlated systematic uncertainties** correlations between correlated uncertainties different collaborations different x, Q² grids **2927** \rightarrow **1307** points χ^{2} /dof = 1.04

DESY 15-039

HERAPDF 2.0

All 1145 cross sections with $Q^2 \ge 3.5 \text{ GeV}^2$ are input to a QCD analysis within the framework of DGLAP perturbative QCD.

HERAPDF2.0 NNLO NLO LO

Azalembolas.com	high Q ²	Q ² > 10 GeV ²
	AG	alternative gluon
Hera likes a good fit!	FF 3A/B	fixed flavour
	Jets	includes charm and
HERAFitter		jet data $\rightarrow \alpha_s$

independent code

For overview, see desy 15-039 App. 1 and 2.

HERAPDF 2.0

HERAPDF 2.0 NLO and 2.0 NNLO are the recommended PDFs for general useage.

HERAPDF 2.0 and 1.5

2.0 has a bit harder valence, especially at NLO and reduced gluon uncertainties at NNLO.

HERAPDF 2.0 HiQ2

HERAPDF2.0 has a χ^2 /dof of about 1.2. Using only data with Q² ≥ 10GeV² reduces it to 1.15. Heavy flavour schemes and FL make a difference, but ..

Wildbad Kreuth, 8.10.2015

Iris Abt, MPI München

Comparison with data

HERAPDF 2.0 NNLO

HERAPDF 2.0 HiQ2

For all these plots where everything fits, please see desy 15-039

Wildbad Kreuth, 8.10.2015

Iris Abt, MPI München

Comparison with data

The data show a turn-over, which NNLO does not really get. And HiQ2 evolves much too fast. Low Q2 is also low x.

Low x Partons in the Proton ?

Heisenberg is strictly against it !

That x is a fraction of the proton momentum is only an interpretation.

There might be more than DGLAP and pQCD.

Wildbad Kreuth, 8.10.2015

Iris Abt, MPI München

Color Dipole Model

Coherence length: I [fm] \approx 0.1/x

About two thirds of the excess in χ^2 come from high Q². Let's see what theoreticians come up with.

Wildbad Kreuth, 8.10.2015 Iris Abt, MPI München

HERAPDF 2.0 Jets

Precision Cross Sections

26

Valence Quarks

Precision Cross Sections

Outlook

HERA cross sections will hopefully be used by many/all PDF groups. They are probably the legacy of HERA.

HERAPDF2.0 should be useful to compute LHC predictions.

The many variants of HERAPDF2.0 seem to indicate that something is going on beyond DGLAP.

PROSA was founded to find out what.

Iris Abt, MPI München

Castle Castle Interactions

Beautiful Destruction

Outlook

HERA cross sections will hopefully be used by many/all PDF groups. They are probably the legacy of HERA.

HERAPDF2.0 should be useful to compute LHC predictions.

The many variants of HERAPDF2.0 seem to indicate that something is going on beyond DGLAP.

The future (PROSA, more data) will reveal what.