

Diffractive processes at HERA Recent results from H1 and ZEUS experiments

Irina A. Korzhavina (Moscow State University - SINP) On Behalf of H1 and ZEUS Collaborations

World's only 📥 <P collider

 $\sqrt{s_{max}}$ = 318 GeV

 \mathcal{L} ~0.5 fb⁻¹/ experiment

- HERA I : 1992-2000
- HERA II: 2003-2007

 $e^-p :\sim 200 \text{ pb}^{-1}$ $e^+p :\sim 300 \text{ pb}^{-1}$ Analyses Ongoing!

XVII Lomonosov Conference on Elementary Particle Physics

20 – 26 august 2015 Moscow

Diffraction at HERA $ep \longrightarrow eXp$

since 1993

- vacuum quantum numbers colour singlet
- small momentum transfer t
- $M_{\gamma} = m_{p} \rightarrow elastic diffraction$ $<math>M_{\gamma} > m_{p} \rightarrow proton dissociation (BG)$

Signatures and Selection Methods

- smaller x_{IP} (< 0.03) accessible
- *higher Acc* (~ 10%)

Kinematics of (virtual) Photon Diffractive Dissociation

 $Q^{2} = -q^{2} - \text{virtuality of the exchanged } \gamma^{*}$ $Q^{2} \approx 0 - \gamma^{*}p \quad Q^{2} \gg 0 - DIS$ $W - \gamma^{*}p \text{ center-of-mass energy}$ x - struck quark fractional momentum -Bjorken-x $y = Q^{2}/(sx) - \gamma^{*} \text{ inelasticity}$

$$\begin{split} X_{IP} &\simeq (Q^2 + M_X^2)/(Q^2 + W^2) - \text{colour singlet exchange} \\ &\text{fractional momentum (wrt to proton)} \\ \beta &= x/x_{IP} - \text{fractional momentum (wrt to IP)} \\ &\text{of a parton scattering off the } \gamma^* \\ t &= (p - p')^2 - 4 \text{-momentum transfer squared} \\ &\text{at the } p \text{ vtx} \\ M_x - \text{invariant mass of diffractively} \\ &\text{produced system } X \end{split}$$

N=proton: Single Diffractive Dissociation / Elastic Scattering

N=proton-dissociative system: Double Diffractive Dissociation (BG)

QCD Factorisation

QCD factorization theorem: Cross-sections in hadron-hadron or electron-proton collisions are the convolution of universal (process independent) parton distribution functions (PDFs) and (perturbatively calculable) partonic cross-sections:

Factorisation of dependences on variables (x_{μ}, t) describing the proton vertex has been empirically found to apply to a good approximation. This factorisation is parameterised using Regge formalism (Regge factorisation):

$$f^D_i(\beta,Q^2,x_{\rm I\!P},t) = f_{\rm I\!P,\rm I\!R}(x_{\rm I\!P},t) \cdot f_{i/\rm I\!P}(\beta,Q^2) + f_{\rm I\!R}(x_{\rm I\!P},t) \cdot f_{i/\rm I\!R}(\beta,Q^2) + f_{\rm I\!R}(x_{\rm I\!P},t) \cdot f_{i/\rm I$$

IP and *IR* fluxes:
$$f_{IP,IR}(x_{IP},t) = \frac{A_{IP,IR}e^{B_{IP,IR}t}}{x_{IP}^{2\alpha_{IP,IR}(t)-1}}$$

$$\alpha_{I\!\!P,I\!\!R}(t) = \alpha_{I\!\!P,I\!\!R}(0) + \alpha'_{I\!\!P,I\!\!R}t$$

QCD factorisation suggests tests: calculations with DPDFs measured in incslusive DDIS would describe other hard (hard scale present) diffractive processes.

QCD Factorisation Tests

HERA DPDFs fail to describe hadron-hadron diffractive scattering Diffractive Dijet Production: calculations overestimate data by factor of ~10!

Tevatron $p\overline{p} \sqrt{s} = 1800 \text{ GeV}$: CDF

LHC $pp \sqrt{s} = 7 TeV$: CMS

[Phys. Rev. D 87 (2013) 012006]

What about HERA (virtual) photon dissociation?

Diffractive production of dijets at HERA

Pointlike photon

γ γ C, jet g (z_{IP}) p p

DIS, direct γp

 γ * directly involved in hard scattering: $x_{\gamma} = 1$ (parton level) Measured $x_{\gamma} \approx 1$ (due to hadronisation & resolution)

$$x_{\gamma} = x_{\gamma}^{OBS} = \frac{\sum (E - p_z)_{jets}}{(E - p_z)_{hadrons}}$$

 x_{γ} - fraction of γ 's momentum in hard subprocess

Resolved photon

resolved γp

 γ * fluctuates into hadronic system which takes part in hadronic scattering, dominant at $Q^2 \simeq 0$: $x_{\gamma} < 1$

Not Expected QCD Factorisation Break Possible

Diffractive Dijet Photoproduction

•Factorization break observed by H1 and not observed by ZEUS •The suppression is supposed to be larger at low scales and low x_{γ}

But there are no x_{γ} dependence of suppression factor visible

Diffractive Dijets in DIS

NLO calculations with DPDFs H1 2006 Fit B (H1) and ZEUS fit SJ (ZEUS) describe measured cross sections both in shape and normalization.

QCD factorisation in DIS - HOLDS

Diffractive Dijets in DIS

JHEP 1503 (2015) 092 (new measurements) 2005-2007 data LRG DIS $\mathcal{L} = 290 \text{ pb}^{-1}$ $4 < Q^2 < 100 \text{ GeV}^2$ 0. < y < 0.7 $T = -1 < \eta_{jet,1,2} < 2$ E* (jet1,2) > 5.5,4.0 GeV $T = -1 < \eta_{jet,1,2} < 2$ E* (jet1,2) > 5.5,4.0 GeV

Double differential cross sections measured for the 1st time

NLO calculations - in agreement with new measurements

QCD factorisation in **DIS** - HOLDS

high precision of data \Rightarrow a_s determined: $a_s(M_z) = 0.119 \pm 0.004(exp) \pm 0.012(PDF, th)$ -consistent with world average

Diffractive Dijets in yp

JHEP 1505 (2015) 056

- DIS in agreement with QCD factorisation: Data/NLO(DIS) =1.080±0.11 (data)±0.45/0.29(th)
- Factorisation break in γp (as earlier H1 LRG): Data/NLO(γp)=0.551±0.078(data)±0.230/0.149(th)
 - not related to X_{γ} (H1 and ZEUS)
 - VFPS (no *p* dissociation) compare to LRG (*p* dissociation included)

Diffractive Dijets in yp

JHEP 1505 (2015) 056

• *Y* dependence of double ratio not described by NLO

• Double ratio shows no dependence on $E_{T,jet1}$

Exclusive dijet production in diffractive DIS arXive: 1505.05783

 $ep \longrightarrow e + Jet + Jet + p$

• $Q^2 > 25 \text{ GeV}^2 90 < W < 250 \text{ GeV } \mathcal{L} \sim 372 \text{ fb}^{-1}$ • $x_{IP} < 0.01 \eta_{max} < 2 (LRG) M_X > 5 \text{ GeV}$ • $N_{jets} = 2 p_{T,jets} > 2 \text{GeV}$ k_{T} -cluster with FastJet

Two Gluon Exchange model

hard process calculable in pQCD:
 Resolved Pomeron model

BGF: $\sigma \sim G^{D}(x)$ gluon dPDF (H1 2006 A or B)

- theory: $d\sigma/d\phi \sim 1 + \mathbf{A} \cos 2\phi$,
- A sensitive to the nature of an object interacting with γ*
- J. Bartels et al., Phys. Lett. B 386 (1996) 389:
 A > 0 for BGF & A < 0 for two gluon exchange

Exclusive dijet production in diffractive DIS arXive: 1505.05783

Resolved-Pomeron model:

A~ constant(β) > 0 in full β range Calculated σ underestimate data by a factor of ~2 for $\beta < 0.2$ and by a factor of ~10 for $\beta > 0.7$

Two Gluon Exchange model:

A>0 @ $\beta < 0.4$ due to $q\overline{q}g$ A<0 @ $\beta > 0.4$ 1 + **A**cos**2** ϕ fits to $d\sigma/d\phi$

Calculations underestimate data

FUS

"Isolated/prompt" photons — high- p_T photons, produced in a hard partonic subprocess of ep scattering

LO diagrams for diffractive processes with a prompt photon in a final state

These processes, while rare, are interesting for several reasons.

Prompt γ must be radiated from a charged partonic object (q): may reveal q content of \mathbb{P}

or of higher-order processes in which both P & p* couple to q. Specific models of the hard diffractive process may be tested.

 $\mathcal{L} = 374 \text{ pb}^{-1} \text{ of HERA II data} \qquad \mathcal{L} = 91 \text{ pb}^{-1} \text{ of HERA I data} \\ Q^2 < 1 \text{ GeV}^2 \quad 0.2 < y < 0.7 \\ LRG: \eta_{max} < 2.5 \text{ and } x_{IP} < 0.03 \end{cases}$ $5 < E_T^{\gamma} < 15 \text{ GeV and } -0.7 < \eta_{\gamma} < 0.9 \qquad 4 < E_T^{jet} < 35 \text{ GeV and } -1.5 < \eta^{jet} < 1.8$

ZEUS

Shapes fairly well described by RAPGAP (DPDF-p H1-2006-B, PDF-γ SASG 1D LO) normalized to data. Most photons (~0.8) are accompanied by a jet.

x_γ distribution fitted to RAPGAP direct + resolved sample: Ratio=direct/resolved=4/1 obtained

$$x_{\gamma} = \Sigma_{\gamma + jet}(E - p_z) / \Sigma_{all \ EFOs}(E - p_z)$$

The distribution in $Z_{IP} = \sum_{\gamma+jet} (E + pz) / \sum_{all EFOs} (E + pz)$ shows a prominent peak near $Z_{IP} = 1$ not described by RAPGAP.

Would *z*_{*IP*} peak at high values imply contribution of processes not currently modelled with RAPGAP?

Further studies required

No new data but new results on diffraction studies

ID New data on dijets in diffractive DIS and γp with higher precision

- For dDIS regime QCD factorisation is confirmed to hold by H1 and ZEUS
- For γp dijets are in favor of QCD factorisation break, not confirmed by ZEUS
- γp suppression factor shows independence w.r.t. *p*-dissociation, $x_{\gamma} \& E_{T,jet}$
- For the 1st time double differential cross sections & *α* measured in dDIS
 Exclusive dijets in diffractive DIS measured for the 1st time
- Cross sections are underestimated by Resolved-Pomeron and Two Gluon Exchange models
- Shapes of the ϕ distributions are described with $1 + A \cos 2\phi$ as motivated by theory, A as a function of β being closer to Two Gluon Exchange model

ZEUS

"Prompt" photons in diffractive γp studied for the 1st time

- Calculations using RAPGAP reasonably describe shapes of kinematic variable distributions except for high value z_{IP} peak
- Data are strongly dominated by the direct photons are accompanied by a jet.

Studies of HERA data are ongoing: new results are expected