



# **Precision QCD measurements at HERA**



Hayk Pirumov on behalf of the H1 and ZEUS Collaborations



#### **OUTLINE:**

- NC *ep* cross sections at high Bjorken *x*
- NC *ep* cross sections at large *y*
- NC *ep* cross sections at high  $Q^2$  and  $\sqrt{s} = 225$  and 252 GeV and extraction of FL
- Combination of inclusive *ep* cross sections
- QCD analysis of combined *ep* cross sections

<u>Phys.Rev.D89(2014)072007</u> <u>Phys.Rev.D90(2014)072002</u>

<u>E.P.J.C 74(2014)2814</u> <u>ArXiv:1506.06042, submitted to EPJC</u> <u>ArXiv:1506.06042, submitted to EPJC</u>

17th Lomonosov Conference, Moscow, 24.08.2015

### Introduction

HERA, worlds only *ep* collider, located at DESY, Hamburg

- HERA I: 1992 2000
- HERA II: 2003 2007

Low proton energy runs in the end of HERA operation





Two collider experiments H1 and ZEUS → Collected ~0.5 fb<sup>-1</sup> of data per
experiment

## Inclusive deep inelastic ep scattering (DIS)

• HERA data covers a wide range in *x* 



• DGLAP allows to evaluate PDFs from HERA to the LHC region

Neutral and charged current processes



Virtuality of exchanged boson:  $Q^2 = -q^2 = (l - l')$ Bjorken scaling variable:  $x = Q^2 / (2P \cdot q)$ Inelasticity:  $y = (P \cdot q) / (P \cdot l)$ Centre of mass energy squared:  $s = (l + P)^2 = Q^2 / (x \cdot y)$ 

• NC and CC processes provide a unique opportunity to study proton's structure

#### NC ep cross section measurement at high x Phys. Rev. D89(2014)072007



 High x available from fixed target experiments is only at low Q<sup>2</sup>.

- Measuring high x high Q<sup>2</sup> data allows to have additional constrains on PDFs in that region.
- NC ep DIS cross sections at  $Q^2 > 725$  GeV<sup>2</sup> up to  $x \cong 1$ measured by ZEUS experiment.
- The measurement shows a good agreement with the Standard Model predictions.

### NC cross section and $F_L$ structure function

E.P.J.C 74(2014)2814, Phys.Rev.D90(2014)072002

#### At moderate values of $Q^2$ :

$$\widetilde{\sigma}_{\rm NC}({\bf x},{\bf Q}^2,{\bf y}) = \frac{{\rm d}^2 \sigma_{\rm NC}^{\rm ep}}{{\rm d} {\bf x} {\rm d} {\bf Q}^2} \cdot \frac{{\bf x} {\bf Q}^4}{2\pi\alpha\,Y_+} = {\bf F}_2({\bf x},{\bf Q}^2) - \frac{{\bf y}^2}{Y_+} {\bf F}_{\rm L}({\bf x},{\bf Q}^2)$$

where 
$$Y_{+}=1+(1-y)^{2}$$



- Bulk of HERA data:  $\sqrt{s} = 318$  GeV (HER)
- By the end of HERA run:  $\sqrt{s} = 225$  GeV (LER) and  $\sqrt{s} = 251$  GeV (MER) data
- This allows to measure NC cross sections at fixed x and  $Q^2$  for different values of  $y \rightarrow$  disentangle  $F_L$  and  $F_2$  structure functions
- F<sub>L</sub> is a QCD effect, direct measurement of which allows to test pQCD
  F<sub>L</sub> is directly sensitive to the gluon

### NC *ep* cross section at $\sqrt{s} = 225$ , 251 and 318 GeV





NC cross sections measured by the H1 at different center of mass energies.

Predictions (H1PDF2012) provide a good description of the data.

Similar measurement performed by ZEUS experiment

#### **Extraction of longitudinal structure function F** E.P.J.C 74(2014)2814. Phys. Rev. D90(2014)072002

•  $F_2$  and  $F_L$  are simultaneously determined by the H1 from a  $\chi^2$  fit, taking correlated systematics into account using HER, MER and LER cross sections.



• Similar technique is used by ZEUS.

A good agreement between NNLO predictions and the measurements.

 Overall consistency between the H1 and ZEUS about 1 – 2σ.

## Extraction of longitudinal structure function F<sub>1</sub>

E.P.J.C 74(2014)2814, Phys.Rev.D90(2014)072002

 $\mathbf{F}_{\mathrm{L}}$  allows to directly measure gluon density:





 Gluon density extracted from F<sub>L</sub> (solid points) is compared to the gluon density from set of PDFs HERAPDF1.5 (shadowed area) as well as to the result of applying the equation above to the F<sub>L</sub> prediction based on HERAPDF1.5 (dashed line).

+ Gluon density extracted directly from  $\rm F_L$  reasonably well agrees with the gluon density from HERAPDF1.5.

8

#### **Inclusive DIS combination**

٠

ArXiv:1506.06042, submitted to EPJC

• HERA II data provides a great statistical improvement compare to the HERA I data.

 In total 41 final data sets of HERA (21 → HERA I and 20 → HERA II) inclusive measurements.



#### H1 and ZEUS

Combination is performed with HERAverager tool based on  $\chi^2$  minimisation method.

• Grid points shown in red are used for data with  $\sqrt{s} = 318$  GeV.

Blue grid points correspond to data with  $\sqrt{s} = 225$  and 251 GeV

#### **Inclusive DIS combination**

ArXiv:1506.06042, submitted to EPJC



- Data is consistent between HERA I and HERA II as well as between two experiments
- Large uncertainty reduction, especially in e<sup>-</sup>p due to 10x increase in luminosity.
- Large HERA II luminosity yields in significant improvement in precision at high x and  $Q^2$ .

## **QCD** analysis of combined DIS cross sections

ArXiv:1506.06042, submitted to EPJC

• Final HERA I + II combined inclusive DIS data used as an input to a QCD analysis.



QCD fit is performed using HERAFitter open source QCD fit framework, available at <u>www.herafitter.org</u>

• The PDFs are parametrised at the starting scale  $Q^2 = 1.9$  GeV<sup>2</sup> as follows:

$$xg(x) = A_{g} \cdot x^{B_{g}} \cdot (1-x)^{C_{g}} - A_{g} \cdot x^{B_{g}} \cdot (1-x)^{C_{g}}$$
  

$$xu_{v}(x) = A_{u_{v}} \cdot x^{B_{u_{v}}} \cdot (1-x)^{C_{u_{v}}} \cdot (1+E_{u_{v}}x^{2})$$
  

$$xd_{v}(x) = A_{d_{v}} \cdot x^{B_{d_{v}}} \cdot (1-x)^{C_{d_{v}}}$$
  

$$x \overline{U}(x) = A_{\overline{U}} \cdot x^{B_{\overline{U}}} \cdot (1-x)^{C_{\overline{U}}} \cdot (1+D_{\overline{U}}x)$$
  

$$x \overline{D}(x) = A_{\overline{D}} \cdot x^{B_{\overline{D}}} \cdot (1-x)^{C_{\overline{D}}}$$

\*  $x \overline{U} = x \overline{u}$ ,  $x \overline{D} = x \overline{d} + x \overline{s}$ ,  $xs = x \overline{s}$ ,  $x \overline{s} = r_s x \overline{d}$ normalisation parameters:  $A_{u_v}$ ,  $A_{d_v}$ ,  $A_g$ \* Condition that  $x \overline{u} \rightarrow x \overline{d}$  as  $x \rightarrow 0$ constrains  $B_{\overline{U}} = B_{\overline{D}}$  and  $A_{\overline{U}} = A_{\overline{D}}/(1+r_s)$ \* 14 free parameters

• PDFs are then evolved via DGLAP evolution equations to LO, NLO and NNLO using QCDNUM package.

 Heavy quarks are treated using Thorne-Roberts General Mass Variable Flavor Number Scheme

## **HERAPDF 2.0**

- PDFs are determined by minimizing  $\chi^2$  function with the respect to PDF parameters.
- The  $\chi^2$  function used has a similar form to the one used in  $F_{\rm L}$  extraction and inclusive data combination.



Red → experimental uncertainty, estimated using Hessian method.
Yellow → model uncertainty, from variation of quark masses, α etc..

 Green → an envelope from PDF fits using variants of parametrisation form (extra D or E parameters in polynomial) as well as starting scale variations.

#### **Data and fit comparison**

ArXiv:1506.06042, submitted to EPJC

H1 and ZEUS



Predictions based on HERAPDF2.0 give a good description of data in both NLO and NNLO.

Scaling violations clearly visible over a large kinematic range

#### **HERAPDF 2.0** at high $Q^2$

ArXiv:1506.06042, submitted to EPJC



• Combined HERA I inclusive NC cross sections compared to predictions from HERAPDF1.0.

• Great precision achieved both in data and in HERAPDF2.0, by combining HERA I and HERA II measurements.

### Structure function $x F_3^{\gamma Z}$

ArXiv:1506.06042, submitted to EPJC

 $xF_{3}^{\gamma Z}$  structure function is extracted by taking the difference between NC  $e^{+}p$  and  $e^{-}p$  cross sections.  $\widetilde{\sigma}_{NC}^{+-} \sim F_{2} \mp \frac{Y}{Y} xF_{3} - \frac{y^{2}}{Y}F_{L}$ 



#### **Electroweak unification**

ArXiv:1506.06042, submitted to EPJC



 NC e<sup>-</sup>p and e<sup>+</sup>p are the same in the γ – exchange dominating region and start to differ in the high Q<sup>2</sup> region where γ − Z interference becomes important.

 NC and CC cross sections become similar in magnitude at around the mass-scale squared of the electroweak bosons.

### Summary

- The H1 and ZEUS have finalised inclusive DIS measurements and combined the individual results.
- Latest measurements of DIS cross section at very high *x* by ZEUS are expected to provide constrains on the PDFs at high *x* region, where the contribution of valence quarks is important.
- Measurements in the high y region by both H1 and ZEUS allow to decouple  $F_2$  and  $F_L$  structure functions thus providing direct sensitivity to the gluon.

• The total luminosity of about *1* fb<sup>-1</sup> collected by the experiments provides cross sections of very high precision, which improve precision of PDFs.

