Combination of Differential D^{*±} Cross - Section Measurements in DIS at HERA

Lidia Goerlich

Institute of Nuclear Physics PAN, Cracow on behalf of the H1 and ZEUS collaborations

- Charm production in DIS
- Combination of D* differential cross sections measured at HERA
- NLO QCD predictions (massive Fixed Flavour Number Scheme)
- Data vs. theory predictions
- Summary

Low-x Meeting 2015

Sandomierz, Poland, 1-5 September, 2015

HERA

E_e = 27.6 GeV

- HERA the world's only ep collider operated in 1992-2007 colliding electrons or positrons with protons
- two colliding beam experiments: H1 and ZEUS
- Nominal proton beam energy :

HERA I (1995-2000) $E_p = 820 / 920 \text{ GeV}$ $\sqrt{s} = 300 / 318 \text{ GeV}, L_{int} = 126 \text{ pb}^{-1}$ HERA II (2003-2007) $E_p = 920 \text{ GeV}$ $\sqrt{s} = 318 \text{ GeV}, L_{int} = 373 \text{ pb}^{-1}$

Reduced proton beam energy : $E_p = 460 \text{ GeV}, \sqrt{s} = 225 \text{ GeV}, L_{int} = 12.4 \text{ pb}^{-1}$ $E_p = 575 \text{ GeV}, \sqrt{s} = 250 \text{ GeV}, L_{int} = 6.2 \text{ pb}^{-1}$ 2

Charm production in DIS

Boson-Gluon Fusion $\gamma g \rightarrow c \underline{c}$ dominant process of charm production in DIS

- **Q**² |virtuality| of the exchanged boson
- X fraction of proton momentum carried by struck quark in Quark Parton Model
- y inelasticity, fraction of lepton energy taken by photon in the proton rest frame
 DIS : Q² ≥ 1 GeV²

Fraction of charm contribution to the inclusive DIS cross section

Charm production in DIS

• Tests of perturbative QCD

(multiple hard scales m_c , Q^2 , $p_T(c)$, various heavy quark mass schemes)

- Sensitivity to the gluon density in the proton
- Constraints on the flavour composition of quarks in the proton
- Measurements of c-quark mass and its running
- Constraints on the charm fragmentation parameters
- Impact on proton parton distribution functions (PDFs)
 - \rightarrow improvement of predictions for W^{\pm} / Z and Higgs production cross-sections at the LHC

At HERA different techniques used to measure charm production cross sections :

- full reconstruction of D or D* mesons
- lifetime tagging
- tagging of leptons from semi-leptonic decays of heavy-flavour hadrons

Reduced cross sections σ_{red}^{cc} for charm production measured by the H1 and ZEUS exp. combined, $2.5 \le Q^2 \le 2000 \text{ GeV}^2$, EPJ C73 (2013) 2311

(extrapolation from the visible to the full phase space, significant theory related uncertainties)

Combination of D^{*±} differential cross sections in DIS

• analysis of fully reconstructed D^{*±} mesons: best signal - to- background ratio

H1 medium Q², $5 \le Q^2 \le 100 \text{ GeV}^2$, $L_{int} = 348 \text{ pb}^{-1}$, EPJ **C71** (2011) 1769 H1 high Q², $100 \le Q^2 \le 1000 \text{ GeV}^2$, $L_{int} = 351 \text{ pb}^{-1}$, PL **B686** (2010) 91 ZEUS, all Q², $5 \le Q^2 \le 1000 \text{ GeV}^2$, $L_{int} = 363 \text{ pb}^{-1}$, JHEP **05** (2013) 097 ZEUS, HERA I, $1.5 \le Q^2 \le 1000 \text{ GeV}^2$, $L_{int} = 82 \text{ pb}^{-1}$, PR **D69** (2004) 012004 (used only for 2d cross sections)

- H1 and ZEUS data combined in the visible phase space region \rightarrow small extrapolation ($5 < Q^2 < 1000 \text{ GeV}^2$, 0.02 < y < 0.7, $p_T(D^*) > 1.5 \text{ GeV}$, $|\eta(D^*)| < 1.5$) uncertainties
- single and double (Q² > 1.5 GeV²) differential cross section in various variables

Clean signal in $M(K^-\pi^+\pi^+_s) - M(K^-\pi^+)$ distribution

Combination of most precise D^{*±} visible differential cross sections from full HERA II data-set performed separately for each variable

- Combined data reach precision of ≈ 5% in large fraction of phase space
- data consistent between H1 and ZEUS
- exp. systematic uncertainties independent between H1 and ZEUS
- significantly reduced experimental uncertainties due to :
 - doubling of statistics
 - all correlations of systematic uncertainties taken into account
- negligible theoretical uncertainties [only little extrapolation

 \rightarrow (0-10%) of total uncertainty]

arXiv: 1503.06042, to be published in JHEP

Combined D^{*±} differential cross sections vs. y, $p_T(D^*)$, $\eta(D^*)$ and $z(D^*)$

arXiv: 1503.06042, to be published in JHEP

- charm quark is massive at all scales ($Q^2 \approx m_c^2$), mass effects correctly included
- 3 light quark flavours (u, d, s) and g in the proton PDF, no charm in the proton
- heavy quarks produced perturbatively in hard scattering
- no resummation of large logs of Q^2/m_c^2 , p_T/m_c , ...

Full NLO (O(α_s^2)) and partial NNLO (O(α_s^3)) calculations of heavy-flavour production in DIS exist

Charm production cross section in DIS at HERA best described by NNLO predictions in the massive FFNS scheme (EPJ C73 (2013) 2311, combined σ_{red}^{cc} , calculations of Alekhin, Blümlein and Moch)

leading order $O(\alpha_s)$ process

NLO QCD predictions for D^{*±} production

• HVQDIS program (B. W. Harris & J. Smith, PR D57 (1998) 2806)

NLO FFNS predictions for differential x-sec for c-quarks converted to D^{*±}-meson cross sections using fragmentation function (FF) of Kartvelishvili et al.

 $ep \rightarrow e \ c\underline{c} \ X \rightarrow e \ D^* \ X$

Estimation of theoretical uncertainties :

- $\mu_r^2 = \mu_f^2 = Q^2 + 4m_c^2$, scales changed independently by factors 0.5 and 2
- the pole mass of the charm-quark $m_c = 1.50 \pm 0.15$ GeV
- HERAPDF1.0, FFNS
- $\alpha_s^{nf=3}(M_Z) = 0.105 \pm 0.002$ (corresponds to $\alpha_s^{nf=5}(M_Z) = 0.116 \pm 0.002$)
- uncertainties related to fragmentation:
 - Fragmentation parameter $\alpha_{K}(D^{*})$ in FF
 - \$: photon-parton CMS energy squared

 $\hat{s}_1 = 70 \pm 40 \text{ GeV}^2$, $\hat{s}_2 = 324 \text{ GeV}^2$

\hat{s} range	$\alpha_K(D^*)$
$\hat{s} \le \hat{s}_1$	6.1 ± 0.9
$\hat{s}_1 < \hat{s} \le \hat{s}_2$	3.3 ± 0.4
$\hat{s} > \hat{s}_2$	2.67 ± 0.31

- transverse fragmentation f(k_T) = k_Texp(-2k_T/<k_T>); <k_T> = 0.35 ± 0.15 GeV
- Fragmentation fraction f(c→D*) = 0.2287 ± 0.0056
- HVQDIS : estimation of small beauty contribution to the D^{*±} signal (ep \rightarrow e b<u>b</u> X \rightarrow e D^{*} X)

Customised NLO QCD predictions for D*± production

- Find parameters of the HVQDIS calculations providing reasonable description of all D*differential cross sections in shape and normalisation
- Theory uncertaint dominated by variations of scales μ_{r} and μ_{f} , c-quark pole mass and fragmentation model

▶ reduce μ_r by factor 2 : $\mu_r^2 = Q^2 + 4m_c^2$, $\mu_r \rightarrow 0.5 \cdot \mu_r \rightarrow increase of D^*$ cross section

▶ reduce charm-quark pole mass : m_c = 1.50 GeV → m_c = 1.40 GeV → increase of D* cross section

change parameter ŝ₁ in longitudinal Kartvelishvili FF

 $\hat{s}_1 = 70 \text{ GeV}^2 \rightarrow \hat{s}_1 = 30 \text{ GeV}^2 \rightarrow \text{ soften fragmentation}$

\hat{s} range	$lpha_K(D^*)$
$\hat{s} \le \hat{s}_1$	6.1 ± 0.9
$\hat{s}_1 < \hat{s} \le \hat{s}_2$	3.3 ± 0.4
$\hat{s} > \hat{s}_2$	2.67 ± 0.31

all other parameters are left at their default values

This adjustment is not a prediction but may give hints in which direction to develop theory

- Data are more precise than theory predictions
 - data reach precision of $\approx 5\%$
 - theoretical uncertainties from (30- 40)% at low Q² to 10% at high Q²
- NLO QCD predictions describe data reasonably within large uncertainties
- NLO QCD customised describe data very well
- Higher order calculations will reduce theory uncertainties

do/dy vs. NLO QCD prediction

- Data yield much higher precision than theory
 - precision of data $\approx 5\%$
 - typical theoretical uncertainty (10-30)%
- NLO QCD predictions describe data reasonably within large uncertainties
- NLO QCD customised describe data very well

$d\sigma/dp_T(D^*)$ vs. NLO QCD prediction

- Data yield much higher precision than theory
 - precision of data ≈ 5%
 - typical theoretical uncertainty (10- 30)%
- NLO QCD predictions describe data reasonably within large uncertainties
- NLO QCD customised describe data very well
- Higher order calculations will reduce theory uncertainties

NLO predictions (ratio to data) with different variations of parameters \rightarrow preference for a reduced renormalisation scale μ_r

$d\sigma/\eta(D^*)$ vs. NLO QCD prediction

$d\sigma/z(D^*)$ vs. NLO QCD prediction

- Data yield much higher precision than theory
- NLO QCD predictions harder than data
- NLO QCD customised describe data better but not perfect
- NNLO calculations and improved c-quark fragmentation models may help

 $Z(D^*) = (E(D^*) - p_z(D^*)) / (2E_e y)$

z (D*)

Ratio of NLO predictions to data with different variation of parameters

- preference for a reduced renormalisation scale
- sensitivity to fragmentation parameters

Combined double - differential D* cross sections d² σ /dQ²dy

- Combined data reach precision of ≈ (5-10)% in large fraction of phase space
- Data consistent between H1 and ZEUS

- Precise differential D* mesurements in DIS by the H1 and ZEUS experiments combined:
 - distributions of inclusive DIS variables and kinematic variables of D*-mesons
 - significantly reduced overall uncertainties
 - combination in the visible phase space
 - \rightarrow negligible theoretical uncertainties
- Massive-scheme NLO QCD predictions describe data reasonably within large theory uncertainties
- Higher order QCD corrections and improved heavy-quark fragmentation models would be desirable to exploit the precision of the HERA data

Backup slides

Theory of heavy quark production

Massive Fixed Flavour Number Scheme (FFNS)

- charm quark is massive at all scales ($Q^2 \approx m_c^2$), mass effects correctly included
- 3 light quark flavours (u, d, s) and g in the proton PDF, no charm in the proton
- heavy quarks produced perturbatively in hard scattering
- no resummation of large logs of Q^2/m_c^2 , p_T/m_c , ...

Zero Mass Variable Flavour Number Scheme (ZM-VFNS)

- m_c = 0 in matrix elements and kinematics calculations
- flavour threshold $Q^2 \sim m_c^2$:

 $Q^2 < m_c^2 \rightarrow$ charm production cross section vanishes, 3 light flavours in the proton PDF

- $Q^2 > m_c^2 \rightarrow charm as massless parton in the proton in addition to u, d, s (heavy-quark PDF)$
- resummation of large logs of Q²/m_c²

General Mass Variable Flavour Number Scheme (GM-VFNS)

- low Q^2 ($Q^2 \le m_c^2$) : charm production in FFNS approach (mass effects largest)
- high Q² (Q² > m_c²):charm production in ZM-VFNS (important resummation effects)
- at intermediate scales interpolation between 2 schemes
- used in PDF fits

HERA charm data combination in DIS, EPJ C73 (2013) 2311

NLO (NNLO) FFNS predictions give a good description of the HERA charm data. NNLO GM-VFNS predictions also provide a good description of charm reduced cross

sections.