

1/20

Measurement of Exclusive Diffractive Dijet Production in Deep Inelastic Scattering

Marcin Guzik (on behalf of the ZEUS Collaboration)

AGH University of Science and Technology, Cracow

XXIII Low-x Meeting Sandomierz, 1 - 5 September 2015

・ロト ・日ト ・ヨト ・ヨト ・ ショー うへつ

The HERA ep collider and the ZEUS detector

The only lepton-proton collider

HERA

HERA II(2003-2007) $L = 372 \, pb^{-1}$

$$\begin{split} E_{lepton} &= 27.5 \, \mathrm{GeV} \\ E_{proton} &= 920 \, \mathrm{GeV} \end{split}$$

 $\sqrt{s} = 318 \, \text{GeV}$

Kinematic variables

DIS

•
$$q = k - k'$$

•
$$Q^2 = -q^2$$

 $Q^2 > 1 \text{ GeV}^2 \Rightarrow \text{DIS}$

•
$$W^2 = (P + q)^2$$

•
$$s = (P + k)^2$$

•
$$\mathbf{x} = \frac{\mathbf{Q}^2}{2\mathbf{P}\cdot\mathbf{q}}$$

Diffraction

•
$$x_{\mathbb{IP}} = \frac{(P-P') \cdot q}{P \cdot q}$$

•
$$\beta = x/x_{\mathbb{I}P}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

Diffractive Dijet Production Mechanisms Phys. Lett. B386 (1996) 389-396

2-gluon exchange

Boson-Gluon Fusion

fully perturbative calculations based on proton PDFs calculations based on pomeron structure function

▲口> ▲園> ▲目> ▲目> 目 ろんの

Diffractive Dijet Production in $\gamma^* - \mathbb{P}$ CMS

- ϕ angle between lepton and jet planes
- θ polar angle of a jet

Parton Level Azimuthal Angular Distribution Phys. Lett. B386 (1996) 389-396

- $d\sigma/d\phi$ described by the same function in both mechanisms
- two-gluon exchange mechanism predicts negative A
- boson-gluon fusion mechanism predicts positive A

Detector Level MC

 $\begin{array}{l} {\rm SATRAP \ - \ RapGap \ 3.01/26 \ + \ HERACLES \ 4.6.3(radiation)} \\ {\rm + \ JETSET \ 7.4(hadronisation)} \end{array}$

- colour dipole model with saturation
- $q\bar{q}$ and $q\bar{q}g$ in a final state
- description of p_T and ϕ distributions of the dijet sample required hadron level reweighting

Background MC

non-diffractive DIS - DJANGOH 1.6 + HERACLES + ARIADNE diffractive PHP $\,$ - PYTHIA 6.2

Hadron Level Predictions

- 2-gluon exchange model RapGap 3.01/26
- BGF Resolved Pomeron RapGap 3.01/26

$$y_{ij} = 2 \frac{\min\left(E_i^2, E_j^2\right)}{M_X^2} \left(1 - \cos\theta_{ij}\right)$$

 θ_{ij} is the angle between objects (i, j) and M_X is the total mass of hadronic system.

ZEUS

э.

Transverse Energy Flows

Weighted SATRAP describes the jet shape of exclusive dijet sample in both CMS and laboratory frames

<ロ> (四) (四) (日) (日) (日)

Proton dissociation

ZEUS

Reweighting of the $\rm M_Y$ distribution of p-diss MC to the data using p-diss enriched samples

< □ > < □ > < Ξ > < Ξ > < Ξ > Ξ - のQ()

Kinematic range to which data are unfolded

$25 \text{ GeV}^2 <$	\mathbf{Q}^2	
$90~{\rm GeV} <$	W	$< 250 { m ~GeV}$
$5\;{\rm GeV} <$	$M_{\rm X}$	
	хp	< 0.01
	$n_{\rm jets}$	=2
2 GeV <	$p_{T iet}$	

Unfolding and Regularisation

• TSVDunfold (Nucl. Instrum. Meth. A372 (1996) 469-481) Singular Value Decomposition with Regularisation

Cross sections

$$d\sigma \propto 1 + A\cos(2\phi)$$

full statistical covariance matrix and the systematic uncertainties included in fit using the profile method

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

β dependence of shape parameter A

・ロト ・四ト ・ヨト ・ヨト

Hadron level MC for predictions of models

- hadronisation simulated with colour dipole model as implemented in ARIADNE
- proton dissociation not included

Resolved Pomeron Model (G.Ingelman and P.Schlein et al.)

 generated with gluon densities obtained from H1 2006 fits A and B

Two-Gluon-Exchange Model (J. Bartels and H. Jung et al.)

• generated with GRV parametrisation of the gluon density functions

Contribution of $q\bar{q}$ events

- $q\bar{q}$ and $q\bar{q}g$ differ in shape
- the ratio $R_{q\bar{q}} = \sigma (q\bar{q}) / (\sigma(q\bar{q}) + \sigma(q\bar{q}g))$ depends on the $p_{T\,cut}$ applied during generation

<ロ> <回> <回> < E> < E> < E <の</p>

Cross sections and models

ZEUS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

β (A) - comparison with models

Only stat. uncertainties of model predictions are presented

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ● ● ●

- transverse energy flows as functions of pseudorapidity and azimuthal angle have been measured
- the single differential cross section as a function of β and the double differential cross section as a function of β and the azimuthal angle ϕ of exclusive dijets in diffractive DIS has been measured for the first time at HERA
- the data favour 2-gluon exchange model of quark anti-quark production over BGF but both models underestimate the total cross section

Thank You for Your Attention!

