Measurement of Exclusive Diffractive Dijet Production in Deep Inelastic Scattering

Marcin Guzik
(on behalf of the ZEUS Collaboration)
AGH University of Science and Technology, Cracow

XXIII Low-x Meeting Sandomierz, 1 - 5 September 2015

The only lepton-proton collider

 5. We mise-ri4 HERA II $(2003-2007)$
$\mathrm{L}=372 \mathrm{pb}^{-1}$
$\mathrm{E}_{\text {lepton }}=27.5 \mathrm{GeV}$
$\mathrm{E}_{\text {proton }}=920 \mathrm{GeV}$

$$
\sqrt{\mathrm{s}}=318 \mathrm{GeV}
$$

DIS

$$
\begin{aligned}
& \text { - } \mathrm{q}=\mathrm{k}-\mathrm{k}^{\prime} \\
& \mathrm{Q}^{2}=-\mathrm{q}^{2} \\
& \mathrm{Q}^{2}>1 \mathrm{GeV}^{2} \Rightarrow \mathrm{DIS} \\
& \text { - } \mathrm{W}^{2}=(\mathrm{P}+\mathrm{q})^{2} \\
& \text { - } \mathrm{s}=(\mathrm{P}+\mathrm{k})^{2} \\
& \text { - } \mathrm{x}=\frac{\mathrm{Q}^{2}}{2 \mathrm{P} \cdot \mathrm{q}}
\end{aligned}
$$

Diffraction

- $\mathrm{x}_{\mathbb{P}}=\frac{\left(\mathrm{P}-\mathrm{P}^{\prime}\right) \cdot \mathrm{q}}{\mathrm{P} \cdot \mathrm{q}}$
- $\beta=x / x_{\mathbb{P}}$

Diffractive Dijet Production Mechanisms

2-gluon exchange

fully perturbative calculations based on proton PDFs

Boson-Gluon Fusion

$$
\mathrm{e}+\mathrm{p} \rightarrow \mathrm{e}^{\prime}+\mathrm{p}^{\prime}+\mathrm{jet}+\mathrm{jet}
$$

- ϕ - angle between lepton and jet planes
- θ - polar angle of a jet

Parton Level Azimuthal Angular Distribution Phys. Lett. B386 (1996) 389-396

- $\mathrm{d} \sigma / \mathrm{d} \phi$ described by the same function in both mechanisms
- two-gluon exchange mechanism predicts negative A
- boson-gluon fusion mechanism predicts positive A

Detector Level MC

SATRAP - RapGap 3.01/26 + HERACLES 4.6.3(radiation) + JETSET 7.4(hadronisation)

- colour dipole model with saturation
- $q \bar{q}$ and $q \bar{q} g$ in a final state
- description of p_{T} and ϕ distributions of the dijet sample required hadron level reweighting

Background MC

non-diffractive DIS - DJANGOH 1.6 + HERACLES + ARIADNE diffractive PHP - PYTHIA 6.2

Hadron Level Predictions

- 2-gluon exchange model - RapGap 3.01/26
- BGF Resolved Pomeron - RapGap 3.01/26

$$
\mathrm{y}_{\mathrm{ij}}=2 \frac{\min \left(\mathrm{E}_{\mathrm{i}}^{2}, \mathrm{E}_{\mathrm{j}}^{2}\right)}{\mathrm{M}_{\mathrm{X}}^{2}}\left(1-\cos \theta_{\mathrm{ij}}\right)
$$

θ_{ij} is the angle between objects (i, j) and M_{X} is the total mass of hadronic system.

ZEUS

$$
\mathrm{y}_{\mathrm{cut}}=0.15
$$

- if $\mathrm{y}_{\mathrm{ij}}<\mathrm{y}_{\text {cut }}$ then i and j are merged
- every particle must be clustered into a jet
$\gamma^{*}-\mathbb{P}$ CMS
ZEUS

Laboratory Frame
ZEUS

ref. jet
i.e. jet with higher p_{T} in
lab. frame

Weighted SATRAP describes the jet shape of exclusive dijet sample in both CMS and laboratory frames

Reweighting of the M_{Y} distribution of p-diss MC to the data using p-diss enriched samples

$$
\frac{\mathrm{d} \sigma_{\gamma+\mathrm{p} \rightarrow \mathrm{jet} 1+\mathrm{jet} 2+\mathrm{Y}}}{\mathrm{dM}_{\mathrm{Y}}^{2}} \approx \frac{1}{\mathrm{M}_{\mathrm{Y}}^{1.4 \pm 0.6}}
$$

Hadron Level

Kinematic range to which data are unfolded

$$
\begin{array}{rlll}
25 \mathrm{GeV}^{2} & < & \mathrm{Q}^{2} & \\
90 \mathrm{GeV} & < & \mathrm{W} & <250 \mathrm{GeV} \\
5 \mathrm{GeV} & < & \mathrm{M}_{\mathrm{X}} & \\
& \mathrm{x}_{\mathbb{P}} & <0.01 \\
& \mathrm{n}_{\text {jets }} & =2 \\
2 \mathrm{GeV} & <\mathrm{p}_{\mathrm{T} \text { jet }} &
\end{array}
$$

Unfolding and Regularisation

- TSVDunfold (Nucl. Instrum. Meth. A372 (1996) 469-481) Singular Value Decomposition with Regularisation

Cross sections

ZEUS

$$
\mathrm{d} \sigma \propto 1+\mathrm{A} \cos (2 \phi)
$$

full statistical covariance matrix and the systematic uncertainties included in fit using the profile method

Hadron level MC for predictions of models

- hadronisation simulated with colour dipole model as implemented in ARIADNE
- proton dissociation not included

Resolved Pomeron Model
(G.Ingelman and P.Schlein et al.)

- generated with gluon densities obtained from H1 2006 fits A and B

Two-Gluon-Exchange Model (J. Bartels and H. Jung et al.)

- generated with GRV parametrisation of the gluon density functions

Contribution of $q \bar{q}$ events

- $\mathrm{q} \overline{\mathrm{q}}$ and $\mathrm{q} \overline{\mathrm{q}} \mathrm{g}$ differ in shape
- the ratio $\mathrm{R}_{\mathrm{q} \overline{\mathrm{q}}}=\sigma(\mathrm{q} \overline{\mathrm{q}}) /(\sigma(\mathrm{q} \overline{\mathrm{q}})+\sigma(\mathrm{q} \overline{\mathrm{q}}))$ depends on the $\mathrm{p}_{\mathrm{T} \text { cut }}$ applied during generation

ZEUS

$\mathrm{p}_{\mathrm{T} \text { cut }}=1.75 \mathrm{GeV}$ gives good description of measured ratio

Cross sections and models

ZEUS

ZEUS

Only stat. uncertainties of model predictions are presented

- transverse energy flows as functions of pseudorapidity and azimuthal angle have been measured
- the single differential cross section as a function of β and the double differential cross section as a function of β and the azimuthal angle ϕ of exclusive dijets in diffractive DIS has been measured for the first time at HERA
- the data favour 2-gluon exchange model of quark anti-quark production over BGF but both models underestimate the total cross section

Thank You for Your Attention!

