Combination of Measurements of Inclusive Deep

 Inelastic ep Scattering Cross Sections and QCD Analysis of HERA Data [arxiv: 1506.06042]

E. M. Lobodzinska for H 1 and ZEUS Collaborations

Low-x Sandomierz IX 2015

HERA - the world's only ep collider

Inclusive Deep Inelastic Scattering

Neutral current

Charged current

- Variables used:
- $\mathrm{q}=\mathrm{k}-\mathrm{k}^{\mathrm{c}} \quad$ 4-momentum of exchanged boson e^{e}
- $Q^{2}=-q^{2}>0$ virtuality of the exchanged boson
- $s=(k+p)^{2} \quad$ central mass energy
- $\mathrm{x}=\mathrm{Q}^{2} / 2 \mathrm{p} \cdot \mathrm{q}$ Bjorken x
- $y=p \cdot q / p \cdot k$ inelasticity

- $Q^{2}=x y s$

Cross Sections and Structure Functions

Reduced cross section for ep scattering NC:

$$
\begin{aligned}
\sigma^{+} r, N C= & F_{2} \pm Y_{-} / Y_{+} x F_{3}-y^{2} / Y_{+} F_{L} \\
& Y_{ \pm}=1 \pm(1-y)^{2}
\end{aligned}
$$

At low Q^{2} i.e. $Q^{2} \ll \mathrm{Mz}^{2}$ $\sigma_{r, N C}=F_{2}-y^{2} / Y_{+} F_{L}$
$F_{2}=x \sum e^{2}{ }_{q}[q(x)+\bar{q}(x)]$
F_{2} sensitive to quarks
At low Q^{2} and low y :

$$
\sigma_{r, N C}=F_{2}
$$

$$
x F_{3}=x \sum 2 e_{q} a_{q}[q(x)-\bar{q}(x)]
$$

xF_{3} sensitive to valence quarks distribution

$$
\mathrm{F}_{\mathrm{L}} \sim \mathrm{a}_{\mathrm{s} \times \mathrm{g}}
$$

F_{L} sensitive to gluons distribution (gluons also from scaling violation and charm+jet distributions)

Inclusive DIS data samples

- data collected for $E_{e}=27.5 \mathrm{GeV}$ and $\mathrm{E}_{\mathrm{p}}=920,820,575,460 \mathrm{GeV}$
- HERA I lumi $100 \mathrm{pb}^{-1} \mathrm{e}^{+} \mathrm{p}$ and $15 \mathrm{pb}^{-1} \mathrm{e}^{-p}$ per experiment
- HERA II lumi $150 \mathrm{pb}^{-1} \mathrm{e}^{+} \mathrm{p}$ and $235 \mathrm{pb}^{-1}$ e-p per experiment
- 41 data sets with HERA inclusive measurements
- 21 HERA I data samples
- 20 HERA II data samples
- Data taken 1994-2007 (over 10 years of data taking!)
- 22 papers on inclusive DIS measurements in years 1997-2014 (almost 20 years of data analysis!)

Kinematic plane coverage of the HERA measurements

For NC:
$0.045 \leq \mathrm{Q}^{2} \leq 50000 \mathrm{GeV}^{2}$
$610^{-7} \leq x \leq 0.65$
$0.005 \leq y \leq 0.95$

For CC:
$200 \leq \mathrm{Q}^{2} \leq 50000 \mathrm{GeV}^{2}$
$1.310^{-2} \leq x \leq 0.4$
$0.037 \leq y \leq 0.76$

HERA data span six orders of magnitude in Q^{2} and x Measurements from HERA core of all PDFs extractions

Common (x, Q²) grids

H1 and ZEUS

Two common grids :
\rightarrow inclusive grid for $\sqrt{ } \mathrm{s}=318 \mathrm{GeV}$, $\mathrm{E}_{\mathrm{p}}=920 \mathrm{GeV}$ and $\mathrm{E}_{\mathrm{p}}=820 \mathrm{GeV}$

- \rightarrow fine grid for $\sqrt{ } \mathrm{s}=251 \mathrm{GeV}$ and $\sqrt{ }=225 \mathrm{GeV}, \mathrm{E}_{\mathrm{p}}=575 \mathrm{GeV}$ and $\mathrm{Ep}=460 \mathrm{GeV}$

In total 1307 points.
Vast majority of points contains data from both H1 and ZEUS (often several points from independent samples).

Translation of the measurement points to the grid points

For $\mathrm{Q}^{2}>3 \mathrm{GeV}^{2}$ DGLAP NLO, below $4.9 \mathrm{GeV}^{2}$ fractal fit.

Averaging

Averaging done using HERAverager (https://wiki-zeuthen.desy.de/HERAverager) based on χ^{2} minimisation method

162 correlated systematic sources taken into account
2927 published cross-sections combined to 1307 final measurements.
For 1620 degrees of freedom, χ^{2} min $=1687$ obtained
Different reconstruction methods used by H1 and ZEUS => similar systematic sources influence the measurement differently => efficient constrain of systematics.

Combined results

Combined results

H1 and ZEUS

H1 and ZEUS

Largest improvement for NC e-p - 10 times more luminosity.
Significant improvement in accuracy Consistent with HERA I, but higher precision

HERA PDF2.0

$1 \mathrm{fb}^{-1}$ HERA data exclusively used as input !
4 different processes present: NC and CC for $e^{+} p$ and e-p
$\mathrm{NC} e^{+} p$ data at different centre-of-mass energy => sensitivity to FL

Consistent data set with small correlated systematic uncertainties
M_{c} and M_{b} constrained using charm and beauty data.

Additional HERAPDF2.0 sets: HERAPDF2.0HiQ2 at NLO and NNLO $-\mathrm{Q}^{2}$ min $=10 \mathrm{GeV}^{2}$

HERAPDF2.0AG at LO, NLO, NNLO - alternative gluon parameters (strictly positive)
HERAPDF2.0Jets at NLO - charm and jets data added => reduced uncertainty on high-x gluon distribution and possibility for simultaneous determination of α s.

QCD Analysis

Goal: determination of the input distributions of light quarks and gluons
PDFs at starting scale $\mu_{\mathrm{f} 0}=1.9 \mathrm{GeV}^{2}$ parametrised:

$$
\begin{aligned}
& x f(x)=A x^{B}(1-x)^{C}\left(1+D x+E x^{2}\right) \\
& \text { for } x g, x u_{v}, x d_{v}, x \bar{U} \stackrel{\mu_{0}}{=} \bar{u}, x \bar{D} \stackrel{\mu_{0}}{=} x \bar{d}+x \bar{s}
\end{aligned}
$$

Evolution using DGLAP equations at LO, NLO and NNLO Fits to the data using χ^{2} method

14 fit parameters at NNLO
Heavy Quarks from Roberts-Thorne Variable Flavour Number Scheme

HERAPDF2.0 - inclusive data comparison

H1 and ZEUS

$$
\begin{gathered}
\mathrm{X}^{2} / \mathrm{dof}=1357 / 1131 \\
(\mathrm{HERAPDF} 2.0) \\
\text { for } \mathrm{Q}^{2} \text { min }=3.5 \mathrm{GeV}^{2}
\end{gathered}
$$

tried also Q^{2} min $=10 \mathrm{GeV}^{2}$ (HERAPDF2.0HiQ2) $\chi^{2} /$ dof $=1156 / 1002$
including jet data Q^{2} min $=3.5 \mathrm{GeV}^{2}$
(HERAPDF2.0Jets)
$X^{2} /$ dof $=1568 / 1340$

Good description of NC, CC data by NLO and NNLO HERAPDF2.0

HERAPDF2.0 - comparison to low Q^{2} data

Description generally good, however some problems at low x and Q^{2} with the turnover related to F_{L}.

For the lowest Q^{2} prediction too high, however the turnover present as expected at low x and Q^{2}.

Parton distribution functions extracted with HERAPDF2.0

Experimental, model and parametrisation uncertainties shown separately.

HERAPDF2.0 parton distributions NNLO vs NLO

H1 and ZEUS

Bands show total PDF uncertainty calculated by adding in quadrature experimental, model and parametrisation uncertainties.

Main difference - different shapes of gluon distributions.

Valence quarks very similar.

HERAPDF2.0 parton distributions NLO vs LO

H1 and ZEUS

LO predictions needed for LO Monte Carlo generators.

Only experimental uncertainties shown for LO predictions.

Gluon distribution at LO rises much faster than in NLO.
xu_{v} distribution softer at LO.

Electroweak unification

H1 and ZEUS

xF_{3} structure function

$$
x \tilde{F}_{3}=\frac{Y_{+}}{2 Y_{-}}\left(\sigma_{r, \mathrm{NC}}^{-}-\sigma_{r, \mathrm{NC}}^{+}\right)
$$

xF_{3} calculated from the difference of e-p and $e^{+} p$ NC cross sections
$x F_{3}^{\gamma Z} \approx \frac{x}{3}\left(2 u_{v}+d_{v}\right)$
gives information about valence quarks

Weak Q^{2} dependence => translated to common scale and averaged. Integrated over x:

$$
0.016<x<0.725
$$

HERAPDF2.0 :1.165 ${ }_{-0.053}^{+0.042}$
Data :1.314 ± 0.057 (stat) ± 0.057 (syst)

$$
0<x<1
$$

HERAPDF2.0 :1.588 ${ }_{-0.100}^{+0.078}$
QPM : 5/3
Data :1.790 ± 0.078 (stat) ± 0.078 (syst)

H1 and ZEUS

$$
Q^{2}=1000 \mathrm{GeV}^{2}
$$

- HERA $1 \mathrm{fb}^{-1}$

HERAPDF2.0 NLO

Good agreement with predictions.

Helicity effects in CC

Scaling violations

H1 and ZEUS

Scaling seen only at moderate x , at high and low x no scaling due to gluon emission and gluon splitting.

Rise of F_{2} at low x

The higher Q^{2} the steeper rise - another demonstration of scaling violation.

Determination of $\boldsymbol{\alpha}_{s}$

H1 and ZEUS

α_{s} determined from QCD fit (to inclusive data + charm + jets) HERAPDF2.0Jets with α_{s} as a free parameter
$\alpha_{s}\left(M_{Z}^{2}\right)=0.1183 \pm$
$0.0009(\mathrm{exp}) \pm 0.0005($ model $/$ parameterisat
± 0.0012 (hadronisation) ${ }_{-0.0030}^{+0.0037}$ (scale)

Experimental uncertainty below 1%. Uncertainty dominated by theory NNLO ep jet calculations needed.

Very good agreement with world average:

$$
\alpha_{s}\left(M_{Z}^{2}\right)=0.1185
$$

Longitudinal structure function F_{L}

H1 extracted gluon density from FL using approximation:

$$
x g\left(x, Q^{2}\right) \approx 1.77 \frac{3 \pi}{2 \alpha_{S}\left(Q^{2}\right)} F_{L}\left(a x, Q^{2}\right)
$$

result consistent with gluon determined from scaling violations.
F_{L} structure function sensitive to gluons. Directly measured by H 1 and ZEUS using runs with lowered proton beam energy.
FL measurements not combined yet.
Consistency between H1 and ZEUS: $\chi^{2} / \mathrm{ndf}=11 / 8$ $R=\sigma_{L} / \sigma_{T}=F_{L} / F_{2}-F_{L}$

$$
\mathrm{R}_{\mathrm{H} 1}=0.23 \pm 0.04 \quad 1.5 \leq \mathrm{Q}^{2} \leq 800 \mathrm{GeV}^{2}
$$

$$
\text { RzEus }=0.105+0.055-0.0379 \leq \mathrm{Q}^{2} \leq 110 \mathrm{GeV}^{2}
$$

H1 Collaboration

Summary

- All inclusive HERA data combined in consistent set of NC and CC cross section measurements, spanning 6 orders of magnitude in x and Q^{2}.
- The inclusive cross sections used as an input to a QCD analysis within the DGLAP formalism. Resulting parton distributions HERAPDF2.0 - available at LO, NLO, NNLO. Included into LHAPDF.
- All three structure functions $\left(F_{2}, F_{L}\right.$ and $\left.\mathrm{xF}_{3}\right)$ measured.
- The results constitute the HERA legacy of nearly 25 years of activity.

