Low-x Meeting 2015 1-5 September , Sandomierz, Poland

Search for CD Instantons at HER

Stanislaw Mikocki Institute of Nuclear Physics PAN Cracow on behalf of the H1 Collaboration

The H1 Experiment at HERA

- Unique ep collider 1992-2007
- Two collider experiments H1 and ZEUS
- Collected data
- ~100 pb⁻¹ (HERA-I)
- ~400 pb⁻¹ (HERA-II)
- This analysis: HERA-II data

HERA operation

Instantons

- Instantons: non-perturbative fluctuation of the gauge fields
- In Standard Model, istantons induce anomalous processes violating conservation of baryon and lepton number in EW and chirality in QCD
- Instanton interpretations:
 - localized *pseudoparticle* in space and time (euclidean space) or as
 - tunnelling (Minkowski space) process between topologically non-equivalent vacua

Cross-section for instanton induced processes exponentially suppressed $\sigma \sim e^{-4\pi/\alpha}$ (α -coupling constant)

QCD Instanton in DIS at HERA

- Instanton-induced events produced in quark-gluon fusion
- Theory and fenomenology workout out by A.Ringwald and F.Schrempp
- Implementation in QCDINS Monte Carlo generator makes full event topology available

Sizeable cross section in recommended phase space:

0.1 < y < 0.9,
$$Q^2 > Q'_{min}^2 \approx 113 \,\text{GeV}^2$$
, x'>0.35
Prediction: $\sigma^{(I)} \approx 25 - 30 \,\text{pb}$

$$Q'^{2} = -q'^{2} = -(q - q'')^{2}$$
$$x' = Q'^{2} / (2 g \cdot q')$$
$$W_{i}^{2} = Q'^{2} (1 - x') / x'$$

S. Moch, A. Ringwald, F. Schrempp, Nucl Phys. B 507 (1997) 134 [hep-ph/9609445], A. Ringwald, F. Schrempp, Phys. Lett. B 438 (1998) 217 [hep-ph/9806528], A. Ringwald, F. Schrempp, Phys. Lett. B 459 (1999) 249 [hep-ph/9903039]. http://www.desy.de/~t00fri/instanton.html

QCD Instanton at HERA : Expected Signature

Hard "current" jet
Densely populated narrow I-band
Isotropy in instanton rest frame
High multiplicity
Large total Et
not expoloited in this analysis:
chirality violation
flavour "democracy"

H1 and ZEUS searches

- early HERA-I data
- No signal observed and upper limits set
- Upper limits above theory prediction H1: hep-ex/0205078
 ZEUS: hep-ex/0312048
 This analysis: H1 prelim-15-031 H1 prelim-14-031

Events Selection

DIS selection 150 < Q² < 15000 GeV² 0.2 < y < 0.7

> **Tracks Selection** P_T > 0.12 GeV 20° < θ < 160°

Data sample : ~358 pb⁻¹

Jet Selection

 $\begin{array}{l} \mbox{Inclusive kT algorithm} \\ \mbox{in HCMS frame} \\ \mbox{P}_{T} > 3 \ GeV \\ \mbox{Jets boosted to LAB:} \\ \mbox{P}_{T, \, jet} > 2.5 \ GeV \\ \mbox{-1} < \eta_{jet} < 2.5 \end{array}$

Monte Carlos used

Background: DJANGOH(*CDM*) RAPGAP[*DGLAP(MEPS)*] Signal: QCDINS

A. Ringwald, F. Schrempp,[hep-ph/9911516], Comput. Phys. Commun. **132** (2000) 267 http://www.desy.de/t00fri/qcdins/qcdins.html

Observables and MultiVariate Analysis (MVA)

Multivariate discrimination technique was used to reduce "standard" DIS Background and extract expected signal

Five observables selected: $E_{T,Jet}$, n_B , Δ_B , E_{IN} , x' •good signal to backgroud separation with good discription by MCs •resulted discriminator distribution is well discribed in background dominated region

PDERS method was used

(Probability Density Estimator with Range Search, ROOT TMVA package)

Trainning was done with -QCDINS (signal) -DJANGOH/RAPGAP (background) (in the further analysis- only DJANGOH used)

Distributions of Selected Observables for TMVA training

Background models discribe data within 5-10% At very low and/or very large values the difference upto 20%.

PDERS Discriminator Distribution

Distributions of Selected Observables NOT used in training

Also other observables were checked on whether the signal is observed see next slide

Distributions of Selected Observables NOT used in training Signal region D>0.86

Data are discribed by DJANGOH, No excess of events observed

Upper Limit

•Cls method •Using full range discriminator •Background:DJANGOH

Experimental syst uncertainties
Difference DJAMGOH-RAPGAP as background model uncertainty
20% uncertainty of predicted signal cross section due to Λ_{OCD} uncertainty

> Observed Upper Limit: 1.6 pb at 95% CL

Predicted cross section:

 $150 < Q^2 < 15000 \text{ GeV}^2, \ 0.2 < y < 0.7$ $Q'^2 > 113 \text{ GeV}^2, \ x' > 0.35$ $\sigma^{(I)} = 10 \text{ pb}$

Exclusion limits on the plane Q'² vs x'

 $\begin{array}{l} Calculation \ of \ instanton \ cross-section \ involes \\ I-size \ distribution \ (\rho) \ and \\ I-\bar{I}-distance \ distribution \ (R/\rho) \end{array}$

 $\label{eq:keyfeature} \underbrace{Key \ feature}_{\ \ variables \ in \ momentum \ space \ (Q',x') \ and \\ space \ variables \ (\rho,R) \end{aligned}$

Large Q' \leftrightarrow small ρ Large x' \leftrightarrow large R/ ρ

Region of validity of I-perturbation theory in (Q',x') from Confrontation with lattice results for QCD(nf=0):

$$\begin{array}{cc} \rho \lesssim \rho_{\max} &\approx 0.35 \, \mathrm{fm} \\ \frac{R}{\rho} \gtrsim \left(\frac{R}{\rho}\right)_{\min} \approx 1.05 \end{array} \end{array} \right\} \Rightarrow \begin{cases} Q^{'2} \ge \left(30.8\Lambda \frac{n_f=3}{\mathrm{MS}}\right)^2 \approx 113 \, \mathrm{GeV}^{-2} \\ x' &\gtrsim 0.35 \end{cases}$$

- •Results have additional meanning in terms of instantons size/distance (at least qualitatively) In addtion:
 - it takes into account effect of very steep behavior of x' and Q' distributions

Exclusion Limits

Upper limits on Instanton Production Cross Section at 95% CL

Upper limits on cross section 1.5 - 6 pb at 95% CL are set depending on kinematic domain

•Most strigent exclusion limits σ_{lim}~1.5 pb observed for large Q^{'2}_{min} and small x'_{min}

•For increasing x'_{min} limits become weaker

Summary

- The discovery of instantons would be the first evidence for topological fluctuations of a non-perturbative aspect of QCD
- H1 performed searches in high Q² regime for instanton-induced DIS processes predicted by A. Ringwald and F. Schrempp
- No evidence for QCD instanton induced processes is observed
- In nominal kinematic region x'>x'_{min}=0.35 and Q'²>Q'²_{min}=113 GeV² upper limit 1.6 pb is set on instanton cross section at 95 % CL and corresponding predicted cross section 10 pb is excluded
- Exclusion limits on Q'²-x' plane in terms Q'²>Q'²_{min}, x'>x'_{min} are calculated Part of kinematic region is excluded Upper limits on the cross section between 1.5 pb and 6 pb at 95% CL are set, depending on the kinematic domain