Combination of Measurements of Inclusive Deep Inelastic ep Scattering Cross Sections and QCD Analysis of HERA Data

ASSOCIATION

PHOTON 2015 Novosibirsk

Uwe Schneekloth, DESY

on behalf of the H1 and ZEUS Collaborations

Outline

Deep Inelastic Scattering at HERA

- Introduction and Motivation
- Inclusive data sets/measurements >
- Combination of inclusive cross sections
- QCD analysis >
- HERA parton distribution > functions
- **Electroweak effects** >
- Conclusions >

HERA a unique facility DIS best tool to probe proton structures

Electroweak

l(l)

QCD

00000

0000

Deep Inelastic Scattering at HERA

Neutral current

$$\frac{d^2 \sigma_{NC}^{e^{\pm}p}}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \Big[Y_+ F_2 \quad \mp Y_- xF_3 - y^2 F_L \Big] \qquad Y_{\pm} = 1 \pm (1 - y)^2$$

$$F_2 \propto \sum_i e_i^2 (xq_i + x\bar{q}_i) \qquad xF_3 \propto \sum_i e_i^2 (xq_i - x\bar{q}_i) \qquad F_L \propto \alpha_s \times g$$
guark distributions valence guarks gluon

 e^{\pm}

Charged current

$$\frac{d^2 \sigma_{CC}^{e^- p}}{dx dQ^2} = \frac{G_F^2}{2\pi} \frac{M_W^2}{M_W^2 + Q^2} \left[u + c + (1 - y^2)(\bar{d} + \bar{s}) \right]$$
$$\frac{d^2 \sigma_{CC}^{e^+ p}}{dx dQ^2} = \frac{G_F^2}{2\pi} \frac{M_W^2}{M_W^2 + Q^2} \left[\bar{u} + \bar{c} + (1 - y^2)(d + \bar{s}) \right]$$

Kinematic variables $Q^2 = -q^2 = -(k - k')^2$ Virtuality of exchanged boson $x = \frac{Q^2}{2p \cdot q}$ Bjorken scaling parameter

 $s = (k + p)^{2} = \frac{Q^{2}}{xy}$ center of mass energy $y = \frac{p \cdot q}{p \cdot k}$ inelasticity

Final Inclusive HERA Data Combination

- > H1 and ZEUS published all HERA inclusive DIS measurements (22 papers 1997-2014)
- Have now combined these measurements
 - In principle, detectors similar. Different technical solutions and different reconstructions techniques result in different systematic errors and contribute to reduction of systematic uncertainties.
- In total 41 final data sets including special runs:
 - Different proton beam energies (820, 920, 575 and 460 GeV)
 - Shifted vertex and satellite bunches
 - Special detectors at small angles
 - Effective electron beam energy reduced to due initial state radiation
 - Integrated luminosity ~500 pb⁻¹ per experiment
 - Equally split between e⁺ and e⁻ beams

Averaging Cross Sections Procedure

- Averaging performed using HERAverger > tool based on X^2 minimization method, including correlated errors.
- Good data consistency $X^2/dof = 1687/1620$

Two separate common $Q^2 - x_{B,I}$ grids

- Inclusive grid for 820 and 920 GeV
- Fine-x_{Bi} grid for 460 and 575 GeV
- Data translated to common points using **HERAFitter tool**

Total of 2927 data points combined to 1307

- $0.045 < Q^2 < 50000 \text{ GeV}^2$
- > $6 \times 10^{-7} < x_{Bi} < 0.65$
- Six orders of magnitude in both Q^2 and x_{Bi}

Cross Sections Results

Cross Sections Results: Improved Precision

Reduced NC e⁻p cross section

NC e⁺p cross section highest precision: total uncertainties < 1.5% for 3 < Q² < 500 GeV², < 3% up to 3000 GeV²

- Largest improvement for NC e^{-p} due to 10x luminosity
- Consistent with previous HERA I results, with improved uncertainties

Cross Sections Results: Improved Precision

Reduced CC e⁻p cross section

- Significantly reduced statistical error
- > Kinematic range extended
- Reduced systematic uncertainties due to cross calibration techniques

Cross Sections: New Kinematic Range

Reduced NC e⁺p cross section

Kinematic range extended by lowering proton beam energy

QCD Analysis - Parton Distribution Functions

- pQCD predictions fitted to all HERA data to determine HERAPDF2.0
- Predictions obtained by solving DGLAP evolution equations at LO, NLO and NNLO in MS scheme
- > Data include 4 different processes: NC and CC for e⁺p and e⁻p, at 4 p beam energies
 - Can extract xd_v , xu_v , $x\overline{U}$ and $x\overline{D}$ PDFs and xg from scaling violation
- Single consistent data set with small systematic uncertainties
- No heavy-target corrections needed
- Same framework as for HERAPDF1.0
 - Q² > 3.5 GeV² safe kinematic region. W (cm energy at γp vertex) > 15 GeV -> large x_{Bj} higher twist correction neglected
 - 3.5 < Q² < 50000 GeV², 0.651 10⁻⁴ < x_{Bj} < 0.65
 - Included all experimental, model and parametrization uncertainties

HERAPDF2.0 – Error Estimation

Full systematic correlated error treatment

- > Experimental uncertainties:
 - Used Hessian method with full secondderivative matrix

> Model uncertainties

- Varying model assumptions, including Q²_{min}, c and b masses, strange sea fraction
- Parametrization uncertainties:
 - Varying parametrization assumptions, including additional parameters and starting scale in DGLAP equation

HERAPDF2.0 at NLO and NNLO

> PDFs in variable-flavor-number-scheme (VNFS) at various orders

> Variant with alternative gluon parametrization

Uwe Schneekloth | HERA DIS, PHOTON 2015 | June 2015 | Page 12

HERAPDF2.0 at NLO and NNLO

- > NLO and NNLO very similar
- > Uncertainties dominated by model uncertainties

HERAPDF1.0 / 2.0 – HERA I / II

Valence (xu_v, xd_v) , sea $(xS = 2x(\bar{U} + \bar{D}))$ and gluon (xg) distributions

- > Valence distributions more peaked at HERAPDF2.0
- > High x sea is softer, gluon harder at HERAPDF2.0
- Significantly reduced uncertainties at high x

HERAPDF2.0 Comparison with Data

NC e⁺p cross section for $2 < Q^2 < 30000$ GeV²

- Excellent agreement with data, except for turnover at low x_{Bi} and low Q² due to F_L
- > NLO and NNLO fits very similar

HERAPDF2.0 Comparison with CC Data

- > Good agreement with data
- > NLO and NNLO fits very similar

$$\sigma_{CC}^{+} \sim x \left[\overline{u} + \overline{c} \right] + x(1-y)^{2} \left[d + s \right]$$

HERAPDF Variants

> HERAPDF2.0AG "alternative gluon parametrization":

- HERAPDF2.0 fits HERA data better. However at NNLO, produces negative gluon distribution for x < 10⁻⁴ (outside kinematic region of fit).
- AG: gluon distribution forced to be positive
- HERAPDF2.0HiQ2:
 - Q²_{min} > 10 GeV² instead of 3.5 GeV²
 - Fit lower than data at low x_{Bi} and low Q², DGLAP evolution not fully adequate
- > HERAPDF2.0FF3A/B
 - Fixed-flavor (FF) scheme instead of variable-flavor-number-scheme (VNFS)

> HERAPDF2.0Jets

- Adding inclusive + charm + jet data (7 data sets on incl. jet, dijet and trijet at low/high Q²)
- Excellent agreement with jet production data

HERAPDF2.0Jets - α_s

Added charm and jet data, NLO at μ_f = 10 GeV²

- > Fits very similar in both cases. Confirms choice of $\alpha_s = 0.118$ in fixed fit
- Full treatment of uncertainties in both cases
- > Fit with free $\alpha_s(M_Z)$ results in

 $\alpha_s(M_Z^2) = 0.1183 \pm 0.0009(\exp) \pm 0.0005(\text{mod./param.}) \pm 0.0012(\text{had.})^{+0.0037}_{-0.0030}(\text{scale})$

Electroweak Unification

 $d^2\sigma/dQ^2 dx_{Bj}$ integrated over x_{Bj} using HERAPDF2.0 NLO

- Virtual photon exchange dominant for Q < 1000 GeV²
- NC and CC cross sections similar for Q² > 10000 GeV² demonstrating electroweak unification

Impressive precision

QCD and Electroweak Effects

Reduced NC e⁺p and e⁻p cross sections

$$\sigma_{r,NC}^{\pm} = \tilde{F}_2 \mp \frac{Y_-}{Y_+} x \tilde{F}_3 - \frac{y^2}{Y_+} \tilde{F}_L$$

 $Y_{\pm} = 1 \pm (1 - y)^2$

At high $Q^2 e^+p$ and e^-p cross sections differ due to γ -Z interference

Structure Function xF^{γZ}₃

$$x\tilde{F}_{3} = \frac{Y_{+}}{2Y_{-}}(\sigma_{r,NC}^{-} - \sigma_{r,NC}^{+})$$

at HERA $x\tilde{F}_{3}^{\gamma Z} \approx \frac{x}{3}(2u_{v} + d_{v})$

- Sensitive at valence quark distributions
- Good agreement with prediction (translated to common scale of 1000 GeV²)

 $\begin{array}{ll} 0.016 < x_{Bj} < 0.725 & \text{HERAPDF2.0: } 1.165 \substack{+0.042 \\ -0.053} & \text{Data: } 1.314 \pm 0.057(\text{stat}) \pm 0.057(\text{syst}) \\ 0 < x_{Bj} < 1 & \text{HERAPDF2.0: } 1.588 \substack{+0.078 \\ -0.100} & \text{Data: } 1.790 \pm 0.078(\text{stat}) \pm 0.078(\text{syst}) \\ & \text{QPM prediction: } 5/3 \end{array}$

Scaling Violations

D.

 $\sigma_{\mathbf{r}, \mathbf{NC}} \mathbf{X}$

Reduced NC e⁻p and e⁺p cross sections

H1 and ZEUS • HERA NC e⁻p 0.4 fb⁻¹ 10⁷ ■ HERA NC e⁺p 0.5 fb⁻¹ $\sqrt{s} = 318 \text{ GeV}$ = 0.00005, i=21= 0.00008, i=2010 □ Fixed Target 0.00013, i=19 HERAPDF2.0 e⁻p NNLO : 0.00032. i=17 HERAPDF2.0 e⁺p NNLO 10[°] .0008. i=15 = 0.0013, i=14 10⁴ : 0.0020, i=13 = 0.0032, i=12= 0.005, i=1110 ³ $x_{Ri} = 0.008, i=10$ $x_{Ri} = 0.013, i=9$ $x_{Ri} = 0.02, i=8$ 10² $x_{p_i} = 0.032, i=7$ = 0.05, i=6000 = 0.08, i=5 10 = 0.13, i=4 $x_{Bi} = 0.18, i=3$ $x_{Bi} = 0.25, i=2$ 1 $x_{Bi} = 0.40, i=1$ 10 $x_{Bi} = 0.65, i=0$ 10 10

 10^{2}

10

1

10⁴

10⁵

 Q^2/GeV^2

 10^{3}

- Scaling violations clearly visible
 - Increasing gluon content of proton with decreasing x_{Bj}
- > Well described by HERAPDF2.0 NLO and NNLO

Low - x Rise of F₂ Structure Function

For phase space with small $x\tilde{F}_3$ and \tilde{F}_L

$$\tilde{F}_{2} = \sigma_{r,NC}^{\pm} \frac{\tilde{F}_{2}^{predicted}}{\sigma_{r,NC}^{\pm predicted}} = \sigma_{r,NC}^{\pm} (1 + C_{F})$$

- Prediction computed using HERAPDF2.0 NLO
- > Plot selected values with $|C_F| < 0.1$
- Steep rise of \tilde{F}_2 , becomes steeper as Q² increases
 - Increasing gluon density
- > Well described by HERAPDF2.0

Conclusions

- H1 and ZEUS measured inclusive e[±]p cross sections from 1994 to 2007
- Final combination of all inclusive data, total integrated luminosity ~1 fb⁻¹
- > High precision cross sections spanning six orders of magnitude in both Q^2 and x_{B_i}
 - Most precise ever published for ep scattering in such large kinematic region
- QCD analysis performed to obtain parton density functions HERAPDF2.0 at LO, NLO and NNLO
 - Including several variants (fixed flavor scheme, high Q²)
- > Precise measurement of $\alpha_s(M_Z)$ done using QCD fit including jet- and charm cross sections measured by H1 and ZEUS
- Electroweak effects studied
- These precision DIS data are one of the legacies of HERA
- Only presented brief summary of very sophisticated analysis.
- Details presented at DIS, Dallas 2015 (4 talks), 150+ page paper to be submitted soon
 Uwe Schneekloth | HERA DIS, PHOTON 2015 | June 2015 | Page 24